In: Computer Science
JAVA PROGRAM Overview :
You will create a card deck program that allows the player to shuffle a deck of cards and play a game that draws and plays cards until all cards in the deck have been used.
Instructions:
The application must be able to perform the following tasks :
1. At the start of a new game, it shuffles all cards using a deck shuffler
2. The player then draws X number of cards from the deck and 'plays' the cards by displaying them in the UI
3. The played cards are then added to a discard pile.
4. The player draws X new cards and repeats playing and discarding cards.
5. When there are no cards left in the deck, the game should ask the player of they want to play again.
-if the answer is yes, create a new deck with the discard pile and start again
-if the answer is no, end the game with a creative message to the player.
Requirements:
- The player must be able to continue to draw cards without errors.
- It should include different methods for drawing, shuffling and playing cards.
-It must include three arrays of a card, using a custom class that includes { Title: string, Description: String}
Constructor and instance methods in class Deck: /* Constructor. Create an unshuffled deck of cards.*/ public Deck() /*Put all the used cards back into the deck, and shuffle it into a random order.*/ public void shuffle() /* * As cards are dealt from the deck, the number of * cards left decreases. This function returns the * number of cards that are still left in the deck. */ public int cardsLeft() /** * Deals one card from the deck and returns it. * @throws IllegalStateException if no more cards are left. */ public Card dealCard()
Constructor and instance methods in class Hand: /** * Constructor. Create a Hand object that is initially empty. */ public Hand() /** * Discard all cards from the hand, making the hand empty. */ public void clear() /** * Add the card c to the hand. c should be non-null. * @throws NullPointerException if c is null. */ public void addCard(Card c) /** * If the specified card is in the hand, it is removed. */ public void removeCard(Card c) /** * Remove the card in the specified position from the * hand. Cards are numbered counting from zero. * @throws IllegalArgumentException if the specified * position does not exist in the hand. */ public void removeCard(int position) /** * Return the number of cards in the hand. */ public int getCardCount() /** * Get the card from the hand in given position, where * positions are numbered starting from 0. * @throws IllegalArgumentException if the specified * position does not exist in the hand. */ public Card getCard(int position) /** * Sorts the cards in the hand so that cards of the same * suit are grouped together, and within a suit the cards * are sorted by value. */ public void sortBySuit() /** * Sorts the cards in the hand so that cards are sorted into * order of increasing value. Cards with the same value * are sorted by suit. Note that aces are considered * to have the lowest value. */ public void sortByValue()
A Card object can be constructed knowing the value and the suit of the card. For example, we can call the constructor with statements such as:
card1 = new Card( Card.ACE, Card.SPADES ); // Construct ace of spades. card2 = new Card( 10, Card.DIAMONDS ); // Construct 10 of diamonds. card3 = new Card( v, s ); // This is OK, as long as v and s // are integer expressions.
/** * An object of type Card represents a playing card from a * standard Poker deck, including Jokers. The card has a suit, which * can be spades, hearts, diamonds, clubs, or joker. A spade, heart, * diamond, or club has one of the 13 values: ace, 2, 3, 4, 5, 6, 7, * 8, 9, 10, jack, queen, or king. Note that "ace" is considered to be * the smallest value. A joker can also have an associated value; * this value can be anything and can be used to keep track of several * different jokers. */ public class Card { public final static int SPADES = 0; // Codes for the 4 suits, plus Joker. public final static int HEARTS = 1; public final static int DIAMONDS = 2; public final static int CLUBS = 3; public final static int JOKER = 4; public final static int ACE = 1; // Codes for the non-numeric cards. public final static int JACK = 11; // Cards 2 through 10 have their public final static int QUEEN = 12; // numerical values for their codes. public final static int KING = 13; /** * This card's suit, one of the constants SPADES, HEARTS, DIAMONDS, * CLUBS, or JOKER. The suit cannot be changed after the card is * constructed. */ private final int suit; /** * The card's value. For a normal card, this is one of the values * 1 through 13, with 1 representing ACE. For a JOKER, the value * can be anything. The value cannot be changed after the card * is constructed. */ private final int value; /** * Creates a Joker, with 1 as the associated value. (Note that * "new Card()" is equivalent to "new Card(1,Card.JOKER)".) */ public Card() { suit = JOKER; value = 1; } /** * Creates a card with a specified suit and value. * @param theValue the value of the new card. For a regular card (non-joker), * the value must be in the range 1 through 13, with 1 representing an Ace. * You can use the constants Card.ACE, Card.JACK, Card.QUEEN, and Card.KING. * For a Joker, the value can be anything. * @param theSuit the suit of the new card. This must be one of the values * Card.SPADES, Card.HEARTS, Card.DIAMONDS, Card.CLUBS, or Card.JOKER. * @throws IllegalArgumentException if the parameter values are not in the * permissible ranges */ public Card(int theValue, int theSuit) { if (theSuit != SPADES && theSuit != HEARTS && theSuit != DIAMONDS && theSuit != CLUBS && theSuit != JOKER) throw new IllegalArgumentException("Illegal playing card suit"); if (theSuit != JOKER && (theValue < 1 || theValue > 13)) throw new IllegalArgumentException("Illegal playing card value"); value = theValue; suit = theSuit; } /** * Returns the suit of this card. * @returns the suit, which is one of the constants Card.SPADES, * Card.HEARTS, Card.DIAMONDS, Card.CLUBS, or Card.JOKER */ public int getSuit() { return suit; } /** * Returns the value of this card. * @return the value, which is one of the numbers 1 through 13, inclusive for * a regular card, and which can be any value for a Joker. */ public int getValue() { return value; } /** * Returns a String representation of the card's suit. * @return one of the strings "Spades", "Hearts", "Diamonds", "Clubs" * or "Joker". */ public String getSuitAsString() { switch ( suit ) { case SPADES: return "Spades"; case HEARTS: return "Hearts"; case DIAMONDS: return "Diamonds"; case CLUBS: return "Clubs"; default: return "Joker"; } } /** * Returns a String representation of the card's value. * @return for a regular card, one of the strings "Ace", "2", * "3", ..., "10", "Jack", "Queen", or "King". For a Joker, the * string is always numerical. */ public String getValueAsString() { if (suit == JOKER) return "" + value; else { switch ( value ) { case 1: return "Ace"; case 2: return "2"; case 3: return "3"; case 4: return "4"; case 5: return "5"; case 6: return "6"; case 7: return "7"; case 8: return "8"; case 9: return "9"; case 10: return "10"; case 11: return "Jack"; case 12: return "Queen"; default: return "King"; } } } /** * Returns a string representation of this card, including both * its suit and its value (except that for a Joker with value 1, * the return value is just "Joker"). Sample return values * are: "Queen of Hearts", "10 of Diamonds", "Ace of Spades", * "Joker", "Joker #2" */ public String toString() { if (suit == JOKER) { if (value == 1) return "Joker"; else return "Joker #" + value; } else return getValueAsString() + " of " + getSuitAsString(); } } // end class Card