In: Finance
Badmmans Firearms Company has the following capital structure, which it considers to be optimal: debt = 17%, preferred stock = 12%, and common equity = 71%.
Badman’s tax rate is 35%, and investors expect earnings and
dividends to grow at a constant rate of 8% in the future. Badman's
expected net income this year is $395,840, and its established
dividend payout ratio is 24%. Badmans paid a dividend of $6.75 per
share last year (D 0 ), and its stock currently sells for $96 per
share. Treasury bonds yield 3%, an average stock has 10% expected
rate of return, and Badmans beta is 1.75. These terms apply to new
security offerings:
Common: New common stock would have a floatation cost of 16%.
Preferred: New preferred could be sold to the public at $122 per share with a dividend of $7.50. Floatation costs of $11 would be made.
Debt: Debt may be sold at an interest of 9.5%.
Find the following:
A: Component cost of debt
B: Component cost of preferred
C: Component cost of retained earnings (DCF)
D: Component cost of retained earnings (CAPM)
E: Component cost of new equity (DCF)
F: Capital budget before Badmans must sell new equity (the breakpoint)
G: WACC retained earnings
H: WACC new equity

Formula sheet
| A | B | C | D | E | F | G | H | I | J | K | L | 
| 2 | |||||||||||
| 3 | A) | ||||||||||
| 4 | |||||||||||
| 5 | Cost of Debt: | ||||||||||
| 6 | |||||||||||
| 7 | Cost of debt will be the yield to maturity of the bonds or the interest rate at which it is sold. | ||||||||||
| 8 | |||||||||||
| 9 | Interest rate at which debt has been sold | 0.095 | |||||||||
| 10 | |||||||||||
| 11 | Hence cost of Debt | =D9 | |||||||||
| 12 | |||||||||||
| 13 | B) | ||||||||||
| 14 | |||||||||||
| 15 | Calculation of cost of preferred stock: | ||||||||||
| 16 | Cost of preferred stock can be calculated as follows: | ||||||||||
| 17 | Annual Dividend of preferred stock | 7.5 | |||||||||
| 18 | Current Price | 122 | |||||||||
| 19 | Floatation cost (F) | 11 | |||||||||
| 20 | Cost of preferred stock | =Dividend/(Current Price-F) | |||||||||
| 21 | Cost of preferred stock | =D17/(D18-D19) | =D17/(D18-D19) | ||||||||
| 22 | |||||||||||
| 23 | Hence Cost of Preferred Stock is | =D21 | |||||||||
| 24 | |||||||||||
| 25 | C) | ||||||||||
| 26 | |||||||||||
| 27 | Calculation of Cost of retained earnings using dividend growth: | ||||||||||
| 28 | |||||||||||
| 29 | Dividend This Year (Div 0) | 6.75 | |||||||||
| 30 | Price | 96 | |||||||||
| 31 | Growth rate | 0.08 | |||||||||
| 32 | Floatation cost (F) | 0 | |||||||||
| 33 | From Dividend growth model, | ||||||||||
| 34 | r(E) = (Div0*(1+g)/P*(1-F))+g | ||||||||||
| 35 | |||||||||||
| 36 | Cost of equity= | =(D29*(1+D31)/D30*(1-D32))+D31 | =(D6*(1+D8)/D7*(1-D9))+D8 | ||||||||
| 37 | |||||||||||
| 38 | Hence cost of Equity is | =D36 | |||||||||
| 39 | |||||||||||
| 40 | D) | ||||||||||
| 41 | |||||||||||
| 42 | Calculation of Cost of retained earnings using CAPM: | ||||||||||
| 43 | As Per CAPM, Expected rate of return can be calculated as | ||||||||||
| 44 | r(E) = rf + ?*(rm-rf) | ||||||||||
| 45 | Using the Following data | ||||||||||
| 46 | Beta (?) | 1.75 | |||||||||
| 47 | Risk free rate ( rf ) | 0.03 | |||||||||
| 48 | Market rate of return (rm) | 0.1 | |||||||||
| 49 | |||||||||||
| 50 | Expected rate of return can be calculated as follows: | ||||||||||
| 51 | Expected rate of return | = rf + ?*(rm-rf) | |||||||||
| 52 | =D47+D46*(D48-D47) | =D47+D46*(D48-D47) | |||||||||
| 53 | |||||||||||
| 54 | Hence Cost of Equity is | =D52 | |||||||||
| 55 | |||||||||||
| 56 | E) | ||||||||||
| 57 | |||||||||||
| 58 | Cost of new Equity can be calculated using dividend growth model as follows: | ||||||||||
| 59 | |||||||||||
| 60 | Dividend This Year (Div 0) | 6.75 | |||||||||
| 61 | Price | 96 | |||||||||
| 62 | Growth rate | 0.08 | |||||||||
| 63 | Floatation cost (F) | 0.16 | |||||||||
| 64 | From Dividend growth model, | ||||||||||
| 65 | r(E) = (Div0*(1+g)/P*(1-F))+g | ||||||||||
| 66 | |||||||||||
| 67 | Cost of equity= | =(D60*(1+D62)/D61*(1-D63))+D62 | =(D60*(1+D62)/D61*(1-D63))+D62 | ||||||||
| 68 | |||||||||||
| 69 | Hence cost of new Equity is | =D67 | |||||||||
| 70 | |||||||||||
| 71 | F) | ||||||||||
| 72 | |||||||||||
| 73 | Weight of common equity, Long-term debt and preferred equity are as follows: | ||||||||||
| 74 | |||||||||||
| 75 | Weight | ||||||||||
| 76 | Long Term Debt | 0.17 | |||||||||
| 77 | Preferred Stock | 0.12 | |||||||||
| 78 | Common Equity | 0.71 | |||||||||
| 79 | |||||||||||
| 80 | Retained Earnings | =Net income*(1-Payout Rate) | |||||||||
| 81 | =$395,840*(1-24%) | ||||||||||
| 82 | =395840*(1-24%) | ||||||||||
| 83 | |||||||||||
| 84 | Since retained earnings is internal source of financing, therefore break point can be calculated on the basis of retained earnings as below: | ||||||||||
| 85 | MCC point | =Limit on equity / % of common Equity | |||||||||
| 86 | Limit on equity | =Retained Earnings | |||||||||
| 87 | =D82 | ||||||||||
| 88 | |||||||||||
| 89 | Breakpoint | =Limit on equity / % of common Equity | |||||||||
| 90 | =D87/D78 | =D87/D78 | |||||||||
| 91 | |||||||||||
| 92 | Hence breakpoint is | =D90 | |||||||||
| 93 | |||||||||||
| 94 | G) | ||||||||||
| 95 | |||||||||||
| 96 | Source of capital | Capital Structure | Cost | ||||||||
| 97 | Debt | =$D$76 | =$D$11 | ||||||||
| 98 | Common Stock | =$D$78 | =(D54+D69)/2 | (Cost of Retained Earnings) | |||||||
| 99 | Preferred Stock | =$D$77 | =$D$23 | ||||||||
| 100 | |||||||||||
| 101 | Tax Rate | 0.35 | |||||||||
| 102 | |||||||||||
| 103 | MCC | = r(E) × w(E) + r(P) × w(P)+r(D) × (1 – t) × w(D) | |||||||||
| 104 | =D98*E98+D99*E99+D97*E97*(1-D101) | =D98*E98+D99*E99+D97*E97*(1-D101) | |||||||||
| 105 | |||||||||||
| 106 | Hence WACC for retained earnings is | =D104 | |||||||||
| 107 | |||||||||||
| 108 | H) | ||||||||||
| 109 | |||||||||||
| 110 | Source of capital | Capital Structure | Cost | ||||||||
| 111 | Debt | =$D$76 | =$D$11 | ||||||||
| 112 | Common Stock | =$D$78 | =D69 | (Cost of Retained Earnings) | |||||||
| 113 | Preferred Stock | =$D$77 | =$D$23 | ||||||||
| 114 | |||||||||||
| 115 | Tax Rate | 0.35 | |||||||||
| 116 | |||||||||||
| 117 | MCC | = r(E) × w(E) + r(P) × w(P)+r(D) × (1 – t) × w(D) | |||||||||
| 118 | =D112*E112+D113*E113+D111*E111*(1-D115) | =D98*E98+D99*E99+D97*E97*(1-D101) | |||||||||
| 119 | |||||||||||
| 120 | Hence WACC for new equity is | =D118 | |||||||||
| 121 | |||||||||||