In: Statistics and Probability
data: n=22
13.9 10.9 9.3 5.2 14.0 2.0 3.2 12.0 13.0 11.3 12.2
5.0 2.0 2.0 17.1 13.4 6.0 14.0 18.0 13.6 5.4 8.7
1. compute x and s2;
2. test H0 : u = 4.50 vs. HA : u is not= 4.50 at the 5%
significance level.
3. construct a 95% confidence interval for u.
4. construct a 99% confidence interval for u.
5. report your p-value of the test in (2).
Values ( X ) | Σ ( Xi- X̅ )2 | |
13.9 | 18.1008 | |
10.9 | 1.5738 | |
9.3 | 0.1194 | |
5.2 | 19.7625 | |
14 | 18.9617 | |
2 | 58.4537 | |
3.2 | 41.5445 | |
12 | 5.5437 | |
13 | 11.2527 | |
11.3 | 2.7374 | |
12.2 | 6.5255 | |
5 | 21.5807 | |
2 | 58.4537 | |
2 | 58.4537 | |
17.1 | 55.5696 | |
13.4 | 14.0963 | |
6 | 13.2897 | |
14 | 18.9617 | |
18 | 69.7977 | |
13.6 | 15.6381 | |
5.4 | 18.0243 | |
8.7 | 0.894 | |
Total | 212.2 | 529.3352 |
Part 1)
Mean X̅ = Σ Xi / n
X̅ = 212.2 / 22 = 9.6455
Sample Standard deviation SX = √ ( (Xi - X̅
)2 / n - 1 )
SX = √ ( 529.3352 / 22 -1 ) = 5.0206
S2 = 25.2064
Part 2)
To Test :-
H0 :- µ = 4.50
H1 :- µ ≠ 4.50
Test Statistic :-
t = ( X̅ - µ ) / ( S / √(n))
t = ( 9.6455 - 4.5 ) / ( 5.0206 / √(22) )
t = 4.8071
Test Criteria :-
Reject null hypothesis if | t | > t(α/2, n-1)
Critical value t(α/2, n-1) = t(0.05 /2, 22-1) = 2.08
| t | > t(α/2, n-1) = 4.8071 > 2.08
Result :- Reject null hypothesis
Part 3)
Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
Critical value t(α/2, n-1) = t(0.05 /2, 22- 1 ) = 2.08 ( From t
table )
9.6455 ± t(0.05/2, 22 -1) * 5.0206/√(22)
Lower Limit = 9.6455 - t(0.05/2, 22 -1) 5.0206/√(22)
Lower Limit = 7.4191
Upper Limit = 9.6455 + t(0.05/2, 22 -1) 5.0206/√(22)
Upper Limit = 11.8719
95% Confidence interval is ( 7.4191 , 11.8719 )
Part 4)
Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
Critical value t(α/2, n-1) = t(0.01 /2, 22- 1 ) = 2.831 ( From t
table )
9.6455 ± t(0.01/2, 22 -1) * 5.0206/√(22)
Lower Limit = 9.6455 - t(0.01/2, 22 -1) 5.0206/√(22)
Lower Limit = 6.6152
Upper Limit = 9.6455 + t(0.01/2, 22 -1) 5.0206/√(22)
Upper Limit = 12.6758
99% Confidence interval is ( 6.6152 , 12.6758 )
Part 5)
P - value = P ( t > 4.8071 ) = 0.0001
Looking for the value t = t = 4.8071 in t table across n - 1 = 21
degree of freedom.