Question

In: Statistics and Probability

data: n=22 13.9 10.9 9.3 5.2 14.0 2.0 3.2 12.0 13.0 11.3 12.2 5.0 2.0 2.0...

data: n=22
13.9 10.9 9.3 5.2 14.0 2.0 3.2 12.0 13.0 11.3 12.2
5.0 2.0 2.0 17.1 13.4 6.0 14.0 18.0 13.6 5.4 8.7

1. compute x and s2;
2. test H0 : u = 4.50 vs. HA : u is not= 4.50 at the 5% significance level.
3. construct a 95% confidence interval for u.
4. construct a 99% confidence interval for u.
5. report your p-value of the test in (2).

Solutions

Expert Solution

Values ( X ) Σ ( Xi- X̅ )2
13.9 18.1008
10.9 1.5738
9.3 0.1194
5.2 19.7625
14 18.9617
2 58.4537
3.2 41.5445
12 5.5437
13 11.2527
11.3 2.7374
12.2 6.5255
5 21.5807
2 58.4537
2 58.4537
17.1 55.5696
13.4 14.0963
6 13.2897
14 18.9617
18 69.7977
13.6 15.6381
5.4 18.0243
8.7 0.894
Total 212.2 529.3352

Part 1)

Mean X̅ = Σ Xi / n
X̅ = 212.2 / 22 = 9.6455
Sample Standard deviation SX = √ ( (Xi - X̅ )2 / n - 1 )
SX = √ ( 529.3352 / 22 -1 ) = 5.0206
S2 = 25.2064

Part 2)

To Test :-
H0 :- µ = 4.50
H1 :- µ ≠ 4.50

Test Statistic :-
t = ( X̅ - µ ) / ( S / √(n))
t = ( 9.6455 - 4.5 ) / ( 5.0206 / √(22) )
t = 4.8071


Test Criteria :-
Reject null hypothesis if | t | > t(α/2, n-1)
Critical value t(α/2, n-1) = t(0.05 /2, 22-1) = 2.08
| t | > t(α/2, n-1) = 4.8071 > 2.08
Result :- Reject null hypothesis

Part 3)

Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
Critical value t(α/2, n-1) = t(0.05 /2, 22- 1 ) = 2.08 ( From t table )
9.6455 ± t(0.05/2, 22 -1) * 5.0206/√(22)
Lower Limit = 9.6455 - t(0.05/2, 22 -1) 5.0206/√(22)
Lower Limit = 7.4191
Upper Limit = 9.6455 + t(0.05/2, 22 -1) 5.0206/√(22)
Upper Limit = 11.8719
95% Confidence interval is ( 7.4191 , 11.8719 )

Part 4)

Confidence Interval
X̅ ± t(α/2, n-1) S/√(n)
Critical value t(α/2, n-1) = t(0.01 /2, 22- 1 ) = 2.831 ( From t table )
9.6455 ± t(0.01/2, 22 -1) * 5.0206/√(22)
Lower Limit = 9.6455 - t(0.01/2, 22 -1) 5.0206/√(22)
Lower Limit = 6.6152
Upper Limit = 9.6455 + t(0.01/2, 22 -1) 5.0206/√(22)
Upper Limit = 12.6758
99% Confidence interval is ( 6.6152 , 12.6758 )

Part 5)

P - value = P ( t > 4.8071 ) = 0.0001
Looking for the value t = t = 4.8071 in t table across n - 1 = 21 degree of freedom.


Related Solutions

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT