In: Finance
The following table shows historical end-of-week adjusted close prices (including dividends) for a stock and the S&P 500.
A | B | C | |
1 | Week | Stock | S&P 500 |
2 | 0 | 39.53 | 2,758 |
3 | 1 | 40.17 | 2,700 |
4 | 2 | 43.1 | 2,742 |
5 | 3 | 42.47 | 2,783 |
6 | 4 | 39.77 | 2,836 |
7 | 5 | 42.07 | 2,762 |
8 | 6 | 43.84 | 2,829 |
9 | 7 | 39.77 | 2,768 |
10 | 8 | 40.1 | 2,866 |
11 | 9 | 40.98 | 3,019 |
12 | 10 | 42.15 | 2,982 |
2. What is the geometric average weekly return for the S&P 500?
3. What is the annualized return for the S&P 500 (EAR)?
4. Calculate the weekly returns. What is standard deviation of weekly returns for the S&P 500?
5. What is the beta of the stock?
Weekly Return of S&P100 (Week1) | -0.02102973 | (2700/2758)-1 | ||||||||||
Weekly Return ofWeek(n)=(Closing Price of Week(n)/Closing price of week(n-1))-1 | ||||||||||||
A | B | C | i | R | (1+R) | |||||||
1 | Week | Stock | S&P 500 | Weekly Return of stock | Weekly Return of S&P500 | (1+Weekly return) | ||||||
2 | 0 | 39.53 | 2,758 | |||||||||
3 | 1 | 40.17 | 2,700 | 0.01619 | -0.02103 | 0.97897 | ||||||
4 | 2 | 43.1 | 2,742 | 0.07294 | 0.015556 | 1.015556 | ||||||
5 | 3 | 42.47 | 2,783 | -0.01462 | 0.014953 | 1.014953 | ||||||
6 | 4 | 39.77 | 2,836 | -0.06357 | 0.019044 | 1.019044 | ||||||
7 | 5 | 42.07 | 2,762 | 0.057833 | -0.02609 | 0.973907 | ||||||
8 | 6 | 43.84 | 2,829 | 0.042073 | 0.024258 | 1.024258 | ||||||
9 | 7 | 39.77 | 2,768 | -0.09284 | -0.02156 | 0.978438 | ||||||
10 | 8 | 40.1 | 2,866 | 0.008298 | 0.035405 | 1.035405 | ||||||
11 | 9 | 40.98 | 3,019 | 0.021945 | 0.053385 | 1.053385 | ||||||
12 | 10 | 42.15 | 2,982 | 0.028551 | -0.01226 | 0.987744 | ||||||
TOTAL | 0.0768 | 0.081658 | ||||||||||
Expected(Mean) Weekly Return of Stock | 0.007679983 | (0.0768/10) | 0.768% | |||||||||
Expected(Mean) WeeklyReturn of S&P500 | 0.008165833 | (0.081658/10) | 0.817% | 0.027063 | ||||||||
2 | Geometric Average Weekly Return of S&P500= | |||||||||||
((1+R1)*(1+R2)*(1+R3)…...(1+Rn))^(1/n))-1 | ||||||||||||
R1,R2,R3 are weekly return in week 1,2,3 ..n | ||||||||||||
Geometric average Weekly Return of S&P | ||||||||||||
(1+R1)*(1+R2)…....(1+R10)= | 1.081218274 | (0.97897*1.015556*…...........0.987744) | ||||||||||
Geometric Average Weekly Return of S&P500= | 0.007839412 | ((1.081218^(1/10))-1 | ||||||||||
Geometric Average Weekly Return of S&P500= | 0.7839% | |||||||||||
3 | Annualized Return of S&P 500(EAR) | |||||||||||
Expected Weekly Return | 0.008165833 | |||||||||||
Annualized Return of S&P 500(EAR)=0.008166*52 | 0.424623339 | |||||||||||
Annualized Return of S&P 500(EAR) | 42.46% | |||||||||||
4 | Standard Deviation of Returns of S&P 500 | 0.027062684 | Using STDEV function of excel over weekly returns of S&P 500 | |||||||||
Standard Deviation of Returns of S&P 500 | 2.71% | |||||||||||
5 | Beta of Stock is the Slope of the Line with Return of S&P 500 in X axis and Stock Return on Y axis | |||||||||||
Slope of the Line = | 0.207310725 | (Using SLOPE function of excel with S&P returns as known Xs and Stock returns known y_s | ||||||||||
Beta of Stock | 0.207310725 | |||||||||||
![]() ![]() |