Question

In: Statistics and Probability

7. (Sec. 3.2) Two fair six-sided dice are tossed independently. Let M = the minimum of...

7. (Sec. 3.2) Two fair six-sided dice are tossed independently. Let M = the minimum of the two tosses. For example, M(2, 5) = 2, M(4, 4) = 4, etc.

(a) What is the PMF of M? [Hint: just work out each probability individually by counting the number of outcomes which result in a specific value for M, i.e. find p(1), then p(2), and so on up to p(6)].

(b) Determine the CDF of M. (

c) Graph the CDF of M.

Solutions

Expert Solution


Related Solutions

Two fair six-sided dice are tossed independently. Let M = the maximum of the two tosses...
Two fair six-sided dice are tossed independently. Let M = the maximum of the two tosses (so M(1,5) = 5, M(3,3) = 3, etc.). (a) What is the pmf of M? [Hint: First determine p(1), then p(2), and so on.] (Enter your answers as fractions.) m 1 2 3 4 5 6 p(m)                                   (b) Determine the cdf of M. (Enter your answers as fractions.)F(m) =      m < 1      1 ≤ m <...
Suppose two fair sided die with sides labeled 1,2,3,4,5,6 are tossed independently. Let X = the...
Suppose two fair sided die with sides labeled 1,2,3,4,5,6 are tossed independently. Let X = the minimum of the value from each die. a. What is the probability mass function(pmf) of X? b. Find the mean E[X] and variance V (X). c. Write the cumulative distribution function (cdf) of X in a tabular form. d. Write F(x) the cdf of X as a step function and give a rough sketch for this function.
Let a random experiment consist of tossing two fair six sided dice. Let x be the...
Let a random experiment consist of tossing two fair six sided dice. Let x be the minimum number shown on the dice. Determine the closed form PMF of x. Hint: Creating a chart for all possible combinations of the two rolls may be helpful.
Use for Questions 1-7: Hector will roll two fair, six-sided dice at the same time. Let...
Use for Questions 1-7: Hector will roll two fair, six-sided dice at the same time. Let A = the event that at least one die lands with the number 3 facing up. Let B = the event that the sum of the two dice is less than 5. 1. What is the correct set notation for the event that “at least one die lands with 3 facing up and the sum of the two dice is less than 5”? 2....
Use for Questions 1-7: Hector will roll two fair, six-sided dice at the same time. Let...
Use for Questions 1-7: Hector will roll two fair, six-sided dice at the same time. Let A = the event that at least one die lands with the number 3 facing up. Let B = the event that the sum of the two dice is less than 5. 1. What is the correct set notation for the event that “at least one die lands with 3 facing up and the sum of the two dice is less than 5”? 2....
Two fair dice are tossed. Let A be the maximum of the two numbers and let...
Two fair dice are tossed. Let A be the maximum of the two numbers and let B be the absolute difference between the two numbers. Find the joint probability of A and B. Are A and B independent? How do you know?
7. Two fair six sided dice are rolled. (i) What is the probability that the sum...
7. Two fair six sided dice are rolled. (i) What is the probability that the sum of the two results is 6? (ii) What is the probability that the larger value of the two results is 4? (iii) What is the probability that the both results are at most 4? (iv) What is the probability that the number 3 appears at least once?
7. [10 marks] Consider an experiment of rolling two regular (or fair) balanced six-sided dice. a)...
7. [10 marks] Consider an experiment of rolling two regular (or fair) balanced six-sided dice. a) List out all the possible outcomes. b) Define X as the amount you will win in the following game. You will win $100 when a double (two identical numbers) is rolled; you will win $10 when an odd sum is rolled; and you will win $30 when other even sum is rolled, excluding doubles. Define X as the amount you will win in this...
Let X be the outcome of rolling a fair six-sided dice. The possible outcomes or X...
Let X be the outcome of rolling a fair six-sided dice. The possible outcomes or X are 1,2,3,4,5 and 6 and all are equally likely. What is the cumulative distribution function F(x)?
Consider some 8-sided dice. Roll two of these dice. Let X be the minimum of the...
Consider some 8-sided dice. Roll two of these dice. Let X be the minimum of the two values that appear. Let Y denote the maximum.   a) Find the joint mass p_X,Y (x,y). b) Compute p_X│Y (x│y) in all cases. Express your final answer in terms of a table.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT