Question

In: Statistics and Probability

1. Following R output is from fitting multiple regression of House price (Y) in thousand based...

1.

Following R output is from fitting multiple regression of House price (Y) in thousand based on Finish Area(X1), Age(X2) and Bedroom(X3).

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 190.11 2.587 73.48 0.00866 **
X1 2.30 0.010 228.00 0.00279 **
X2 -2.46 0.064 -38.03 0 .01674 *
X3 36.67 0.359 101.96 0.00624 **
-----------------------------
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9204 on 1 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 7.813e+04 on 3 and 1 DF, p-value: 0.0026

Estimate the price of the house in thousand when area=150, age=25 and bedroom=4.

2.

Following R output is from fitting multiple regression of House price (Y) in thousand based on Finish Area(X1), Age(X2) and Bedroom(X3).

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 190.11 2.587 73.48 0.00866 **
X1 2.30 0.010 228.00 0.00279 **
X2 -2.46 0.064 -38.03 0 .01674 *
X3 36.67 0.359 101.96 0.00624 **
-----------------------------
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9204 on 1 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 7.813e+04 on 3 and 1 DF, p-value: 0.00263

Find the p-value to test the hypotheses H0:β2=0  vs  H1:β2≠0

3.

Following R output is from fitting multiple regression of House price (Y) in thousand based on Finish Area(X1), Age(X2) and Bedroom(X3).

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 190.11 2.587 73.48 0.00866 **
X1 2.30 0.010 228.00 0.00279 **
X2 -2.46 0.064 -38.03 0 .01674 *
X3 36.67 0.359 101.96 0.00624 **
-----------------------------
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9204 on 1 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 7.813e+04 on 3 and 1 DF, p-value: 0.0026

Test the hypothesis  H0:β2=0  vs  H1:β2≠0   H0:β2=0  vs  H1:β2≠0   α=1%

4.

Following R output is from fitting multiple regression of House price (Y) in thousand based on Finish Area(X1), Age(X2) and Bedroom(X3).

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 190.11 2.587 73.48 0.00866 **
X1 2.30 0.010 228.00 0.00279 **
X2 -2.46 0.064 -38.03 0 .01674 *
X3 36.67 0.359 101.96 0.00624 **
-----------------------------
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9204 on 1 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 7.813e+04 on 3 and 1 DF, p-value: 0.00263

Find the p-value to test the hypotheses:

H0:β1=β2=β3=0H1:βi≠0 for at least on i

Solutions

Expert Solution

Question (1)

The regression equation is

Price = 190.11 + 2.3 * Area + (-2.46) * Age + 36.67 * Bedroom

Given area=150, age=25 and bedroom=4

Prcie = 190.11 + 2.3 * 150 + (-2.46) * 25 + 36.67 * 4

= 620.29

Price of the house in thousand when area=150, age=25 and bedroom=4 is 620.29

Question (2)

the p-value to test the hypotheses H0:β2=0  vs  H1:β2≠0 is the the p-value for X2 variable which is 0.01674

Question (3)

If the p-value is less than the significance level, then the Null Hypothesis will be rejected, else we fail to reject the Null Hypothesis

Here H0:β2=0  vs  H1:β2≠0

We need to look at the p-value for X2 variable

The p-value for X2 variable is 0.01674

The Significance level is 0.01 since there is one * after the p-value

Here the p-value of 0.01674 is more than The Significance level of 0.01, Hence we fail to reject the Null Hypothesis or H0

So β2=0

Question (4)

Find the p-value to test the hypotheses:

H0:β1=β2=β3=0H1:βi≠0 for at least on i

The p-value for all the β combined will be the p-value of the F-statistic

The p-value for F-statistic here is 0.00263


Related Solutions

1. Following is the R output when fitting regression model of X= miles run per week...
1. Following is the R output when fitting regression model of X= miles run per week and Y= weight loss after a year. Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 64.28 8.11 7.93 0.015 * X 1.23 0.63 1.96 0.188 ----------------- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 6.773 on 2 degrees of freedom Multiple R-squared: 0.6586, Adjusted R-squared: 0.4879 F-statistic: 3.858 on 1 and 2 DF, p-value: 0.1885...
The R output below gives the summary of the multiple regression model for birth weight based...
The R output below gives the summary of the multiple regression model for birth weight based on both gestation length and smoking status: lm(formula = Weight ~ Weeks + SmokingStatus, data = births) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -1724.42 558.84 -3.086 0.00265 ** Weeks 130.05 14.52 8.957 2.39e-14 *** SmokingStatusSmoker -294.40 135.78 -2.168 0.03260 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 484.6 on 97 degrees...
You are given the following output for a multiple regression based on a sample of size...
You are given the following output for a multiple regression based on a sample of size n = 10 Predictions Coefficients Standard Error Constant -0.58762 x1 b1=1.510 0.351 x2 b2=-0.245 0.157 x3 b3=1.823 0.836 SSR=17.56; SSE=8.56 (a) Calculate a 90% confidence interval for β1. Provide a clear interpretation of the interval. (b) Which predictor variable(s) – x1, x2, x3 – should be kept in the regression model and why, if testing at a 5% level of significance? (use two-sided tests)...
Below you are given a partial computer output from a multiple regression analysis based on a...
Below you are given a partial computer output from a multiple regression analysis based on a sample of 16 observations. Coefficients Standard Error Constant 12.924 4.425 x1 -3.682 2.630 x2 45.216 12.560 Analysis of Variance Source of Variation Degrees of Freedom Sum of Squares Mean Square F Regression 4853 2426.5 Error 485.3 ​ Carry out the test of significance for the variable x1 at the 1% level. The null hypothesis should be options: be tested for β₃ instead. be rejected....
1.Develop a multiple linear regression model to predict the price of a house using the square...
1.Develop a multiple linear regression model to predict the price of a house using the square feet of living area, number of bedrooms, and number of bathrooms as the predictor variables     Write the reqression equation.      Discuss the statistical significance of the model as a whole using the appropriate regression statistic at a 95% level of confidence. Discuss the statistical significance of the coefficient for each independent variable using the appropriate regression statistics at a 95% level of confidence....
Regression equation for Case 3.0: SUMMARY OUTPUT Regression Statistics Multiple R 0.957 R Square 0.915 Adjusted...
Regression equation for Case 3.0: SUMMARY OUTPUT Regression Statistics Multiple R 0.957 R Square 0.915 Adjusted R Square 0.908 Standard Error 5.779 Observations 52 ANOVA df SS MS F Significance F Regression 4 16947.86487 4236.9662 126.8841 1.45976E-24 Residual 47 1569.442824 33.392401 Total 51 18517.30769 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 39.08190 15.31261 2.55227 0.014012 8.27693 69.88687 X-Price -7.37039 0.98942 -7.44921 1.71E-09 -9.36084 -5.37994 Y-Price -5.42813 0.33793 -16.06289 1.03E-20 -6.10796 -4.74831 Z-Price 4.05067 0.33949 11.93173 7.95E-16...
The following table illustrates the “Multiple Regression” output for “Selling Price” regressed on two independent (predictor)...
The following table illustrates the “Multiple Regression” output for “Selling Price” regressed on two independent (predictor) variables. Given the output, evaluate the significance, if any, of the individual independent variables at the 5% significance level. Make sure that you provide your rationale for your response for each independent variable. Also, indicate what the appropriate regression equation is for estimating the selling price Regression Statistics Multiple R 0.81968 R Square 0.67188 Anova DF SS MS F Regression 2 13313936968 6.7E+09 11.2619...
The following is the estimation results for a multiple linear regression model: SUMMARY OUTPUT             Regression...
The following is the estimation results for a multiple linear regression model: SUMMARY OUTPUT             Regression Statistics R-Square                                                       0.558 Regression Standard Error (S)                  863.100 Observations                                               35                                Coeff        StdError          t-Stat    Intercept               1283.000    352.000           3.65    X1                             25.228        8.631                       X2                               0.861        0.372           Questions: Interpret each coefficient.
The following is the estimation results for a multiple linear regression model: SUMMARY OUTPUT             Regression...
The following is the estimation results for a multiple linear regression model: SUMMARY OUTPUT             Regression Statistics R-Square                                                       0.558 Regression Standard Error (S)                  863.100 Observations                                               35                                Coeff        StdError          t-Stat    Intercept               1283.000    352.000           3.65    X1                             25.228        8.631                       X2                               0.861        0.372           Question: 1. A. Write the fitted regression equation. B. Write the estimated intercepts and slopes, associated with their corresponding standard errors. C. Interpret each coefficient.
Dep.= Mileage Indep.= Octane SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard...
Dep.= Mileage Indep.= Octane SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 7.0000 ANOVA Significance df SS MS F F Regression 9.1970 Residual Total 169.4286 Standard Coefficients Error t Stat P-value Lower 95% Upper 95% Intercept -115.6768 Octane 1.5305 SE CI CI PI PI Predicted Predicted Lower Upper Lower Upper x0 Value Value 95% 95% 95% 95% 89.0000 1.4274 87.0000 2.0544 Is there a relationship between a car's gas MILEAGE (in miles/gallon) and the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT