Question

In: Statistics and Probability

The odds in favor of A winning a game of chess against B are 3:2. If...

The odds in favor of A winning a game of chess against B are 3:2. If 3 games are to be played, what are the odds a. in favor of A winning at least 2 games out of the 3, b. against A losing the first 2 games to B?

Solutions

Expert Solution

a) Odds in favor of A winning =3:2 =3/2

Probability of A winning = O/(1+O) = (3/2)(1+(3/2)) = 3/5

a)

to winning at least 2 games is equivalent to winning 2 games or winning 3 games out of 3 games. We can use binomial to calculate the probability.

= C(3,2) * (3/5)^2 * (2/5)^1 + C(3,3) * (3/5)^3 * (2/5)^0

=81/125

Odds = P/(1-P) = (81/125)/(1-(81/125)) = 81/44 = 81:44

2)

to losing first 2 games is equivalent to (2 lose, 1win)  or (losing 3 games) out of 3 games. We can use binomial to calculate the probability.

Odds in favor of A losing =2:3 =2/3

Probability of A losing = O/(1+O) = (2/3)(1+(2/3)) = 2/5

P(2 loss and last win) = (2/5)*(2/5) *(3/5)= 12/125

P(2 loss and last loss) = (2/5)*(2/5) *(2/5)= 8/125

Probability of at 2 loss= P(2 loss and last win) +P(2 loss and last loss)

=(12/125) +(8/125) =20/125

Odds in favor of A losing = P/(1-P) = (20/125)/(1-(20/125)) = 20/105 = 4/21 = 4:21

Odds in against A losing = 21:4


Related Solutions

Sometimes probability statements are expressed in terms of odds. The odds in favor of an event...
Sometimes probability statements are expressed in terms of odds. The odds in favor of an event A are the following ratio. P(A)/P(not A) = P(A)/P(Ac) For instance, if P(A) = 0.60, then P(Ac) = 0.40 and the odds in favor of A are 0.60/ 0.40 = 6/4 = 3/2 , written as 3 to 2 or 3:2. (a) Show that if we are given the odds in favor of event A as n:m, the probability of event A is given...
Assume that the Gamecocks basketball team has a probability of 0.70 of winning a game against...
Assume that the Gamecocks basketball team has a probability of 0.70 of winning a game against any opponent, and that the outcomes of its games are independent of each other. Suppose during the basketball season it will play a total of 30 games. Let X denote the total number of games that it will win during the season. (a) Write down the formula for the probability mass function (pmf) (p(x)) of X. Is your pmf the binomial pmf? (b) Use...
When Buying a Lotto Ticket What are my odds? a. Calculate your odds of winning if...
When Buying a Lotto Ticket What are my odds? a. Calculate your odds of winning if you spend $1 on an entry. b. Calculate your odds of winning if you spend $50 on an entry. c. Compare these odds to the odds of being in a car accident, plane crash, struck by lightning, or hit by a meterorite. NOTE PLEASE TYPE
What are the odds in favor of rolling a three or a four on a single...
What are the odds in favor of rolling a three or a four on a single die roll and selecting a queen from a deck of cards? I need help. Please show the solution process. Tia
Find the odds for and the odds against the event rolling a fair die and getting...
Find the odds for and the odds against the event rolling a fair die and getting a 6 or a 2. a. The odds for the event are __ to __ ​(Simplify your​ answers.) b. The odds against the event are __ to __ . ​(Simplify your​ answers.)
The odds of winning a certain lottery with a single ticket is 1 in 300,000,000. In...
The odds of winning a certain lottery with a single ticket is 1 in 300,000,000. In May and June, 200,000,000 tickets were bought. 1. Please assume the tickets win or lose independently of each other and give the exact probability that there was no winner during the two months. 2. Only using a basic scientific calculator, give an approximation to the same question from part 1. Explain why this approximation is a good one.
Lotteries and contests in Canada are required by law to state the odds of winning. For...
Lotteries and contests in Canada are required by law to state the odds of winning. For example, the BC Lotto Max main jackpot has a 1 in 33.3 million (so p ≈ 3 · 10−8 ). Suppose we didn’t know the population proportion of jackpot winners, and wanted to calculate it using a sample of 1000 lottery players. (A) Explain why the techniques we used in class are not appropriate for finding a confidence interval for the proportion of jackpot...
According to the California Lottery, the odds of winning the PowerBall is 1 in 292,201,338. This...
According to the California Lottery, the odds of winning the PowerBall is 1 in 292,201,338. This week’s estimated prize is $0.6 billion and one ticket costs $2. a. Calculate the Expected value and standard of deviation of playing the lottery. b. Would a risk-neutral person play the lottery? Explain. c. How about a risk-averse or risk neutral person? Explain.
A pair of dice are rolled find the following? the odds in favor of a sum...
A pair of dice are rolled find the following? the odds in favor of a sum of 4 -the odds in favor a sum of 7 or 11 - the probability of a product that is even and greater than 5
A game of chance offers the following odds and payoffs:
A game of chance offers the following odds and payoffs:Probability         Payoff0.2                      $5000.4                        1000.4                 0a) What is the expected cash payoff?b) Suppose each play of the game costs $100. What is the expected rate of return?c) What is the variance of the expected returns?d) What is the standard deviation of the expected returns?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT