Question

In: Mechanical Engineering

The 500-N force F is applied to the vertical pole as shown 1. Determine the scalar components of the force vector F along the x'- and y'-axes. 2. Determine the scalar components of F along the x- and y'-axes

The 500-N force F is applied to the vertical pole as shown

1. Determine the scalar components of the force vector F along the x'- and y'-axes. 

2. Determine the scalar components of F along the x- and y'-axes.

Solutions

Expert Solution

Solution

Part (1).

we have Fx'= 500 N , Fy'= 0

Part (2). The components of F in the x- and y'-directions are nonrectangular and are obtained by completing the parallelogram as shown in Fig. c. The magnitudes of the components may be calculated by the law of sines. Therefore, 


Related Solutions

Let f(x,y) be a scalar function, and let F(x,y,z) be a vector field. Only one of...
Let f(x,y) be a scalar function, and let F(x,y,z) be a vector field. Only one of the following expressions is meaningful. Which one? a) grad f x div F b) div(curl(grad f)) c) div(div F) d) curl(div(grad f)) e) grad(curl F)
A Cartesian vector can be thought of as representing magnitudes along the x-, y-, and z-axes...
A Cartesian vector can be thought of as representing magnitudes along the x-, y-, and z-axes multiplied by a unit vector (i, j, k). For such cases, the dot product of two of these fectors {a} and {b} corresponds to the product of their magnitudes and the cosine of the angle between their tails as in {a}⋅ {b} = abcos(theta) The cross product yields another vector, {c} = {a} × {b} , which is perpendicular to the plane defined by...
Given the following vector force field, F, is conservative: F(x,y)=(2x2y4+x)i+(2x4y3+y)j, determine the work done subject to...
Given the following vector force field, F, is conservative: F(x,y)=(2x2y4+x)i+(2x4y3+y)j, determine the work done subject to the force while traveling along any piecewise smooth curve from (-2,1) to (-1,0)
Compute the line integral of the vector field F(x, y, z) = ⟨−y, x, z⟩ along...
Compute the line integral of the vector field F(x, y, z) = ⟨−y, x, z⟩ along the curve which is given by the intersection of the cylinder x 2 + y 2 = 4 and the plane x + y + z = 2 starting from the point (2, 0, 0) and ending at the point (0, 2, 0) with the counterclockwise orientation.
Consider the scalar functions f(x,y,z)g(x,y,z)=x^2+y^2+z^2, g(x,y,z)=xy+xz+yz, and=h(x,y,z)=√xyz Which of the three vector fields ∇f∇f, ∇g∇g and...
Consider the scalar functions f(x,y,z)g(x,y,z)=x^2+y^2+z^2, g(x,y,z)=xy+xz+yz, and=h(x,y,z)=√xyz Which of the three vector fields ∇f∇f, ∇g∇g and ∇h∇h are conservative?
The flow of a vector field is F=(x-y)i+(x^2-y)j along the straight line C from the origin...
The flow of a vector field is F=(x-y)i+(x^2-y)j along the straight line C from the origin to the point (3/5, -4/5) A. Express the flow described above as a single variable integral. B. Then compute the flow using the expression found in part A. Please show all work.
Given a scalar fifield φ(x, y, z)=3x2-yz and a vector field F(x, y, z)=3xyz2+2xy3j-x2yzk. Find: (i)F.∇φ....
Given a scalar fifield φ(x, y, z)=3x2-yz and a vector field F(x, y, z)=3xyz2+2xy3j-x2yzk. Find: (i)F.∇φ. (ii)F×∇φ. (iii)∇(∇.F).
1. f(x)= 3x / x^2 + 1 - Vertical Asymtote As x → −, f(x) →...
1. f(x)= 3x / x^2 + 1 - Vertical Asymtote As x → −, f(x) → As x →  +, f(x) → - Any hole in graph - Horizontal asymtote As x → −, f(x) → As x →  +, f(x) →
Calculate the directional derivative of f(x,y,z)=x(y^2)+y((1-z)^(1/2)) at the point P(1,−2,0) in the direction of the vector...
Calculate the directional derivative of f(x,y,z)=x(y^2)+y((1-z)^(1/2)) at the point P(1,−2,0) in the direction of the vector v = 5i+2j−k. (a) Calculate the directional derivative of f at the point P in the direction of v. (b) Find the unit vector that points in the same direction as the max rate of change for f at the point P.
please graph the function f(x)=(x-2)/(x-1) by finding the domain the x and y intercepts the vertical...
please graph the function f(x)=(x-2)/(x-1) by finding the domain the x and y intercepts the vertical asymptotes the horizontal asymptotes the intervals of increase and decrease the local mins/max the intervals of concavity the inflection point(s) as an ordered pair
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT