Question

In: Statistics and Probability

if X=65​, S=12, and n=16, and assuming that the population is normally​ distributed, construct a 90%...

if X=65​, S=12, and n=16, and assuming that the population is normally​ distributed, construct a 90% confidence interval estimate of the population​ mean,μ

Solutions

Expert Solution


Solution :

Given that,

= 65

s = 12

n = 16

Degrees of freedom = df = n - 1 = 16 - 1 = 15

At 90% confidence level the z is ,

= 1 - 90% = 1 - 0.90 = 0.10

/ 2 = 0.10 / 2 = 0.05

t /2,df = t0.05,15 =1.753

Margin of error = E = t/2,df * (s /n)

=1.753 * (12 / 16)

= 5.26

Margin of error = 5.26

The 90% confidence interval estimate of the population mean is,

- E < < + E

65 - 5.26 < < 65 + 5.26

59.74 < < 70.26

(59.74, 70.26 )


Related Solutions

If X=66​, S=27​ and n=36​, and assuming that the population is normally​ distributed, construct a 95...
If X=66​, S=27​ and n=36​, and assuming that the population is normally​ distributed, construct a 95 % confidence interval estimate of the population​ mean.
Assuming that the population is normally​ distributed, construct a 90 % confidence interval for the population​...
Assuming that the population is normally​ distributed, construct a 90 % confidence interval for the population​ mean, based on the following sample size of n equals 5. ​1, 2,​ 3, 4​, and 29 In the given​ data, replace the value 29 with 5 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence​ interval, in general.
Assuming that the population is normally​ distributed, construct a 90​% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 90​% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range. Sample​ A: 1    1    4    4    5    5    8    8    Sample​ B: 1    2    3    4    5    6   7   8 a. Construct a 90​% confidence interval for the population mean for sample A b. Construct a 90​% confidence interval...
Assuming that the population is normally​ distributed, construct a 90% confidence interval for the population​ mean,...
Assuming that the population is normally​ distributed, construct a 90% confidence interval for the population​ mean, based on the following sample size of n=7. ​1, 2,​ 3, 4, 5 6, and 24 Change the number 24 to 7 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence interval.
Assuming the residuals are normally​ distributed, construct a​ 90% confidence interval for the slope of the...
Assuming the residuals are normally​ distributed, construct a​ 90% confidence interval for the slope of the true​ least-squares regression line. Lower​ bound: ? ​(Round to four decimal places as​ needed.) Upper​ bound:? ​(Round to four decimal places as​ needed.) ​(d) What is the mean rate of return for the company stock if the rate of return of the index is 3.15%? The mean rate of return for the company stock if the rate of return of the index is 3.15​%...
Assuming that the population is normally​ distributed, construct a 99% confidence interval for the population​ mean,...
Assuming that the population is normally​ distributed, construct a 99% confidence interval for the population​ mean, based on the following sample size of n=7.​ 1, 2,​ 3,4, 5, 6​,and 30   Change the number 30 to 7 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence interval. Find a 99 % confidence interval for the population mean. ​(Round to two decimal places as​ needed.) Change the number 30...
Assuming that the population is normally​ distributed, construct a 9090​% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 9090​% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range. Sample​ A: 11    22    33    33    66    66    77    88 Full data set Sample​ B: 11    22    33    44    55    66    77    88 Construct a 9090​% confidence interval for the population mean for sample A. nothing less than or equals≤muμless...
assuming that the population is normally distributed, construct a 99% confidence interval for the population mean,...
assuming that the population is normally distributed, construct a 99% confidence interval for the population mean, based on the following sample size n=6. 1,2,3,4,5 and 29. in the given data, replace the value 29 with 6 and racalculate the confidence interval. using these results, describe the effect of an outlier on the condidence interval, in general find a 99% confidence interval for the population mean, using the formula.
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range. Sample A   1 1 2 4 5 7 8 8 Sample B   1 2 3 4 5 6 7 8
Assuming that the population is normally​ distributed, construct a 99​% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 99​% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range. Sample​ A: 1   4   4   4   5   5   5   8 Sample B: 1   2   3   4   5   6   7   8 Construct a 99​% confidence interval for the population mean for sample A. less than or equalsmuless than or equals Type...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT