In: Finance
Use the Black-Scholes formula for the following stock:
Time to expiration | 6 months | |
Standard deviation | 51% per year | |
Exercise price | $41 | |
Stock price | $41 | |
Annual interest rate | 6% | |
Dividend | 0 | |
Recalculate the value of the call with the following changes:
a. | Time to expiration | 3 months | |
b. | Standard deviation | 30% per year | |
c. | Exercise price | $45 | |
d. | Stock price | $45 | |
e. | Interest rate | 9% | |
Calculate each scenario independently. (Round your answers to 2 decimal places.)
a
As per Black Scholes Model | ||||||
Value of call option = (S)*N(d1)-N(d2)*K*e^(-r*t) | ||||||
Where | ||||||
S = Current price = | 41 | |||||
t = time to expiry = | 0.25 | |||||
K = Strike price = | 41 | |||||
r = Risk free rate = | 6.0% | |||||
q = Dividend Yield = | 0% | |||||
σ = Std dev = | 51% | |||||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | ||||||
d1 = (ln(41/41)+(0.06-0+0.51^2/2)*0.25)/(0.51*0.25^(1/2)) | ||||||
d1 = 0.186324 | ||||||
d2 = d1-σ*t^(1/2) | ||||||
d2 =0.186324-0.51*0.25^(1/2) | ||||||
d2 = -0.068676 | ||||||
N(d1) = Cumulative standard normal dist. of d1 | ||||||
N(d1) =0.573904 | ||||||
N(d2) = Cumulative standard normal dist. of d2 | ||||||
N(d2) =0.472624 | ||||||
Value of call= 41*0.573904-0.472624*41*e^(-0.06*0.25) | ||||||
Value of call= 4.44 |
b
As per Black Scholes Model | ||||||
Value of call option = (S)*N(d1)-N(d2)*K*e^(-r*t) | ||||||
Where | ||||||
S = Current price = | 41 | |||||
t = time to expiry = | 0.5 | |||||
K = Strike price = | 41 | |||||
r = Risk free rate = | 6.0% | |||||
q = Dividend Yield = | 0% | |||||
σ = Std dev = | 30% | |||||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | ||||||
d1 = (ln(41/41)+(0.06-0+0.3^2/2)*0.5)/(0.3*0.5^(1/2)) | ||||||
d1 = 0.247487 | ||||||
d2 = d1-σ*t^(1/2) | ||||||
d2 =0.247487-0.3*0.5^(1/2) | ||||||
d2 = 0.035355 | ||||||
N(d1) = Cumulative standard normal dist. of d1 | ||||||
N(d1) =0.597734 | ||||||
N(d2) = Cumulative standard normal dist. of d2 | ||||||
N(d2) =0.514102 | ||||||
Value of call= 41*0.597734-0.514102*41*e^(-0.06*0.5) | ||||||
Value of call= 4.05 |
c
As per Black Scholes Model | ||||||
Value of call option = (S)*N(d1)-N(d2)*K*e^(-r*t) | ||||||
Where | ||||||
S = Current price = | 41 | |||||
t = time to expiry = | 0.5 | |||||
K = Strike price = | 45 | |||||
r = Risk free rate = | 6.0% | |||||
q = Dividend Yield = | 0% | |||||
σ = Std dev = | 51% | |||||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | ||||||
d1 = (ln(41/45)+(0.06-0+0.51^2/2)*0.5)/(0.51*0.5^(1/2)) | ||||||
d1 = 0.005365 | ||||||
d2 = d1-σ*t^(1/2) | ||||||
d2 =0.005365-0.51*0.5^(1/2) | ||||||
d2 = -0.355259 | ||||||
N(d1) = Cumulative standard normal dist. of d1 | ||||||
N(d1) =0.50214 | ||||||
N(d2) = Cumulative standard normal dist. of d2 | ||||||
N(d2) =0.361198 | ||||||
Value of call= 41*0.50214-0.361198*45*e^(-0.06*0.5) | ||||||
Value of call= 4.81 |
d
As per Black Scholes Model | ||||||
Value of call option = (S)*N(d1)-N(d2)*K*e^(-r*t) | ||||||
Where | ||||||
S = Current price = | 45 | |||||
t = time to expiry = | 0.5 | |||||
K = Strike price = | 41 | |||||
r = Risk free rate = | 6.0% | |||||
q = Dividend Yield = | 0% | |||||
σ = Std dev = | 51% | |||||
d1 = (ln(S/K)+(r-q+σ^2/2)*t)/(σ*t^(1/2) | ||||||
d1 = (ln(45/41)+(0.06-0+0.51^2/2)*0.5)/(0.51*0.5^(1/2)) | ||||||
d1 = 0.521638 | ||||||
d2 = d1-σ*t^(1/2) | ||||||
d2 =0.521638-0.51*0.5^(1/2) | ||||||
d2 = 0.161014 | ||||||
N(d1) = Cumulative standard normal dist. of d1 | ||||||
N(d1) =0.699039 | ||||||
N(d2) = Cumulative standard normal dist. of d2 | ||||||
N(d2) =0.563959 | ||||||
Value of call= 45*0.699039-0.563959*41*e^(-0.06*0.5) | ||||||
Value of call= 9.02 |