Question

In: Advanced Math

Let F be a field and let φ : F → F be a ring isomorphism....

Let F be a field and let φ : F → F be a ring isomorphism. Define Fix φ to be Fix φ = {a ∈ F | φ(a) = a}. That is, Fix φ is the set of all elements of F that are fixed under φ. Prove that Fix φ is a field.   (b) Define φ : C → C by φ(a + bi) = a − bi. Take for granted that φ is a ring isomorphism (we proved this in class at some point). Find Fix φ.

Solutions

Expert Solution


Related Solutions

Prove the following: (a) Let A be a ring and B be a field. Let f...
Prove the following: (a) Let A be a ring and B be a field. Let f : A → B be a surjective homomorphism from A to B. Then ker(f) is a maximal ideal. (b) If A/J is a field, then J is a maximal ideal.
2 Let F be a field and let R = F[x, y] be the ring of...
2 Let F be a field and let R = F[x, y] be the ring of polynomials in two variables with coefficients in F. (a) Prove that ev(0,0) : F[x, y] → F p(x, y) → p(0, 0) is a surjective ring homomorphism. (b) Prove that ker ev(0,0) is equal to the ideal (x, y) = {xr(x, y) + ys(x, y) | r,s ∈ F[x, y]} (c) Use the first isomorphism theorem to prove that (x, y) ⊆ F[x, y]...
Let F be a field, and recall the notion of the characteristic of a ring; the...
Let F be a field, and recall the notion of the characteristic of a ring; the characteristic of a field is either 0 or a prime integer. Show that F has characteristic 0 if and only if it contains a copy of rationals and then F has characteristic p if and only if it contains a copy of the field Z/pZ. Show that (in both cases) this determines the smallest subfield of F.
Let A be a commutative ring and F a field. Show that A is an algebra...
Let A be a commutative ring and F a field. Show that A is an algebra over F if and only if A contains (an isomorphic copy of) F as a subring.
Let F be a field and R = Mn(F) the ring of n×n matrices with entires...
Let F be a field and R = Mn(F) the ring of n×n matrices with entires in F. Prove that R has no two sided ideals except (0) and (1).
. Let φ : R → S be a ring homomorphism of R onto S. Prove...
. Let φ : R → S be a ring homomorphism of R onto S. Prove the following: J ⊂ S is an ideal of S if and only if φ ^−1 (J) is an ideal of R.
Let (F, <) be an ordered field, let S be a nonempty subset of F, let...
Let (F, <) be an ordered field, let S be a nonempty subset of F, let c ∈ F, and for purposes of this problem let cS = {cx | x ∈ S}. (Do not use this notation outside this problem without defining what you mean by the notation.) Assume that c > 0. (i) Show that an element b ∈ F is an upper bound for S if and only if cb is an upper bound for cS. (ii)...
let R be a ring; X a non-empty set and (F(X, R), +, *) the ring...
let R be a ring; X a non-empty set and (F(X, R), +, *) the ring of the functions from X to R. Show directly the associativity of the multiplication of F(X, R). Assume that R is unital and commutative. show that F(X, R) is also unital and commutative.
Let R be a UFD and let F be a field of fractions for R. If...
Let R be a UFD and let F be a field of fractions for R. If f(α) = 0, where f ∈ R [x] is monic and α ∈ F, show that α ∈ R NOTE: A corollary is the fact that m ∈ Z and m is not an nth power in Z, then n√m is irrational.
Theorem: Let K/F be a field extension and let a ∈ K be algebraic over F....
Theorem: Let K/F be a field extension and let a ∈ K be algebraic over F. If deg(mF,a(x)) = n, then 1. F[a] = F(a). 2. [F(a) : F] = n, and 3. {1, a, a2 , ..., an−1} is a basis for F(a).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT