In: Statistics and Probability
Week | Sales_BF | Sales_KR | Price_BF | Price_KR |
1 | 455 | 135 | 1.61 | 1.02 |
2 | 530 | 63 | 1.34 | 1.29 |
3 | 527 | 41 | 1.38 | 1.63 |
4 | 418 | 71 | 1.44 | 1.53 |
5 | 380 | 34 | 1.62 | 1.71 |
6 | 267 | 57 | 1.67 | 1.59 |
7 | 247 | 56 | 1.69 | 1.59 |
8 | 297 | 72 | 1.66 | 1.62 |
9 | 303 | 92 | 1.65 | 1.42 |
10 | 237 | 168 | 1.69 | 1.32 |
11 | 275 | 85 | 1.66 | 1.41 |
12 | 426 | 58 | 1.38 | 1.51 |
13 | 480 | 120 | 1.39 | 1.60 |
14 | 289 | 153 | 1.42 | 1.17 |
15 | 366 | 177 | 1.43 | 1.07 |
16 | 426 | 56 | 1.40 | 1.13 |
17 | 587 | 106 | 1.23 | 1.43 |
18 | 277 | 93 | 1.29 | 1.28 |
19 | 333 | 90 | 1.66 | 1.29 |
20 | 345 | 38 | 1.38 | 1.21 |
21 | 375 | 75 | 1.45 | 1.48 |
22 | 364 | 60 | 1.61 | 1.50 |
23 | 263 | 72 | 1.63 | 1.35 |
24 | 225 | 229 | 1.69 | 1.16 |
25 | 324 | 218 | 1.65 | 1.08 |
26 | 471 | 43 | 1.59 | 1.44 |
27 | 516 | 34 | 1.57 | 1.54 |
28 | 682 | 34 | 1.06 | 1.58 |
29 | 579 | 24 | 1.12 | 1.72 |
30 | 403 | 37 | 1.29 | 1.44 |
31 | 446 | 33 | 1.58 | 1.63 |
32 | 383 | 52 | 1.58 | 1.62 |
33 | 376 | 48 | 1.59 | 1.64 |
34 | 453 | 39 | 1.61 | 1.59 |
35 | 414 | 34 | 1.58 | 1.60 |
36 | 481 | 33 | 1.58 | 1.50 |
37 | 440 | 28 | 1.32 | 1.23 |
38 | 400 | 54 | 1.39 | 1.34 |
39 | 406 | 211 | 1.58 | 1.26 |
40 | 376 | 54 | 1.57 | 1.33 |
41 | 381 | 46 | 1.37 | 1.31 |
42 | 293 | 52 | 1.49 | 1.26 |
43 | 398 | 76 | 1.60 | 1.35 |
44 | 336 | 62 | 1.61 | 1.36 |
45 | 330 | 46 | 1.64 | 1.39 |
46 | 354 | 64 | 1.58 | 1.16 |
47 | 564 | 62 | 1.38 | 1.19 |
48 | 434 | 72 | 1.41 | 1.22 |
49 | 422 | 42 | 1.36 | 1.38 |
50 | 374 | 41 | 1.39 | 1.41 |
51 | 362 | 68 | 1.39 | 1.36 |
52 | 334 | 113 | 1.47 | 1.29 |
53 | 253 | 106 | 1.49 | 1.33 |
54 | 312 | 89 | 1.46 | 1.21 |
55 | 350 | 69 | 1.41 | 1.21 |
56 | 430 | 81 | 1.41 | 1.23 |
57 | 331 | 68 | 1.44 | 1.33 |
58 | 240 | 80 | 1.61 | 1.35 |
59 | 248 | 63 | 1.75 | 1.35 |
60 | 338 | 90 | 1.73 | 1.40 |
61 | 328 | 54 | 1.75 | 1.46 |
62 | 254 | 33 | 1.77 | 1.79 |
63 | 240 | 51 | 1.79 | 1.52 |
64 | 282 | 81 | 1.75 | 1.53 |
65 | 329 | 55 | 1.75 | 1.58 |
66 | 288 | 66 | 1.77 | 1.44 |
67 | 257 | 50 | 1.76 | 1.48 |
68 | 267 | 37 | 1.74 | 1.57 |
69 | 353 | 31 | 1.75 | 1.83 |
70 | 350 | 35 | 1.72 | 1.89 |
71 | 304 | 45 | 1.74 | 1.86 |
72 | 237 | 27 | 1.76 | 1.98 |
73 | 365 | 41 | 1.74 | 1.85 |
74 | 321 | 57 | 1.76 | 1.80 |
75 | 291 | 114 | 1.74 | 1.25 |
76 | 257 | 166 | 1.78 | 1.11 |
77 | 303 | 102 | 1.80 | 1.24 |
78 | 327 | 71 | 1.73 | 1.38 |
79 | 294 | 62 | 1.78 | 1.65 |
80 | 279 | 72 | 1.76 | 1.52 |
81 | 239 | 62 | 1.76 | 1.40 |
82 | 310 | 58 | 1.77 | 1.54 |
83 | 312 | 60 | 1.78 | 1.52 |
84 | 368 | 58 | 1.73 | 1.53 |
85 | 419 | 66 | 1.42 | 1.46 |
86 | 269 | 172 | 1.79 | 1.14 |
87 | 349 | 120 | 1.77 | 1.26 |
88 | 250 | 54 | 1.80 | 1.61 |
89 | 260 | 77 | 1.77 | 1.67 |
90 | 243 | 69 | 1.81 | 1.50 |
91 | 285 | 91 | 1.75 | 1.53 |
92 | 284 | 65 | 1.79 | 1.48 |
93 | 312 | 94 | 1.49 | 1.44 |
94 | 223 | 143 | 1.84 | 1.15 |
95 | 301 | 131 | 1.80 | 1.22 |
96 | 250 | 91 | 1.79 | 1.53 |
97 | 298 | 87 | 1.76 | 1.39 |
98 | 351 | 114 | 1.47 | 1.05 |
99 | 385 | 137 | 1.79 | 1.17 |
100 | 241 | 57 | 1.78 | 1.41 |
101 | 249 | 69 | 1.84 | 1.45 |
102 | 242 | 59 | 1.86 | 1.58 |
103 | 230 | 55 | 1.87 | 1.73 |
104 | 277 | 75 | 1.84 | 1.53 |
105 | 209 | 66 | 1.82 | 1.55 |
106 | 202 | 69 | 1.82 | 1.50 |
107 | 260 | 46 | 1.76 | 1.42 |
108 | 386 | 84 | 1.44 | 1.49 |
109 | 350 | 105 | 1.43 | 1.18 |
110 | 254 | 84 | 1.75 | 1.69 |
111 | 277 | 67 | 1.74 | 1.74 |
112 | 240 | 151 | 1.78 | 1.27 |
113 | 251 | 128 | 1.74 | 1.37 |
114 | 273 | 91 | 1.77 | 1.71 |
115 | 264 | 59 | 1.77 | 1.74 |
116 | 228 | 43 | 1.77 | 1.76 |
117 | 291 | 36 | 1.76 | 1.82 |
118 | 301 | 41 | 1.76 | 1.85 |
119 | 246 | 82 | 1.77 | 1.39 |
120 | 267 | 39 | 1.73 | 1.36 |
121 | 306 | 44 | 1.75 | 1.74 |
122 | 310 | 54 | 1.72 | 1.80 |
123 | 250 | 55 | 1.74 | 1.74 |
124 | 326 | 53 | 1.67 | 1.44 |
125 | 286 | 65 | 1.74 | 1.44 |
126 | 350 | 34 | 1.71 | 1.88 |
127 | 338 | 72 | 1.70 | 1.68 |
128 | 290 | 150 | 1.76 | 1.11 |
129 | 381 | 114 | 1.70 | 1.04 |
130 | 530 | 28 | 1.38 | 1.99 |
131 | 369 | 65 | 1.67 | 1.71 |
132 | 256 | 87 | 1.74 | 1.39 |
133 | 228 | 85 | 1.77 | 1.32 |
134 | 330 | 47 | 1.69 | 1.78 |
135 | 319 | 87 | 1.72 | 1.71 |
136 | 358 | 133 | 1.67 | 1.09 |
137 | 467 | 97 | 1.39 | 1.10 |
138 | 354 | 53 | 1.71 | 1.76 |
139 | 482 | 65 | 1.68 | 1.75 |
140 | 370 | 52 | 1.68 | 1.69 |
141 | 356 | 50 | 1.69 | 1.72 |
142 | 369 | 31 | 1.67 | 1.72 |
143 | 441 | 39 | 1.70 | 1.74 |
144 | 527 | 44 | 1.34 | 1.70 |
145 | 421 | 73 | 1.38 | 1.65 |
146 | 313 | 115 | 1.72 | 1.06 |
147 | 326 | 88 | 1.71 | 1.12 |
148 | 332 | 34 | 1.72 | 1.74 |
149 | 269 | 79 | 1.74 | 1.69 |
150 | 416 | 99 | 1.66 | 1.09 |
151 | 516 | 84 | 1.40 | 1.16 |
152 | 451 | 56 | 1.57 | 1.71 |
153 | 415 | 51 | 1.69 | 1.74 |
154 | 349 | 35 | 1.71 | 1.84 |
155 | 396 | 52 | 1.70 | 1.72 |
156 | 373 | 43 | 1.73 | 1.76 |
157 | 324 | 58 | 1.43 | 1.53 |
158 | 647 | 91 | 1.66 | 1.36 |
159 | 505 | 69 | 1.71 | 1.37 |
160 | 363 | 49 | 1.67 | 1.72 |
161 | 370 | 31 | 1.69 | 1.71 |
162 | 569 | 49 | 1.39 | 1.75 |
163 | 523 | 37 | 1.36 | 1.73 |
164 | 489 | 48 | 1.67 | 1.44 |
165 | 370 | 95 | 1.70 | 1.35 |
166 | 395 | 162 | 1.70 | 1.28 |
167 | 387 | 141 | 1.71 | 1.33 |
168 | 349 | 82 | 1.73 | 1.40 |
169 | 330 | 33 | 1.69 | 1.74 |
170 | 361 | 44 | 1.71 | 1.69 |
171 | 425 | 49 | 1.72 | 1.89 |
172 | 364 | 46 | 1.69 | 1.37 |
173 | 509 | 80 | 1.68 | 1.35 |
for model 1
using excel>data>data analysis >regression
we have
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.65923 | |||||
R Square | 0.434584 | |||||
Adjusted R Square | 0.431277 | |||||
Standard Error | 69.24122 | |||||
Observations | 173 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 630130.6 | 630130.6 | 131.432 | 6.17E-23 | |
Residual | 171 | 819833.3 | 4794.347 | |||
Total | 172 | 1449964 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 963.778 | 53.79702 | 17.91508 | 4.35E-41 | 857.5862 | 1069.97 |
Price_BF | -375.918 | 32.7901 | -11.4644 | 6.17E-23 | -440.644 | -311.193 |
Model1: Sales_BF = 963.778 -375.918* Price_BF + Error
for every one unit increase in the Price_BF there is corresponding increase in the sales_BF .
For model 2
using excel>data>data analysis >regression
we have
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.644487 | |||||
R Square | 0.415364 | |||||
Adjusted R Square | 0.411945 | |||||
Standard Error | 29.36262 | |||||
Observations | 173 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 104743.8 | 104743.8 | 121.4895 | 1.1E-21 | |
Residual | 171 | 147429.9 | 862.1632 | |||
Total | 172 | 252173.7 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 233.8303 | 14.75087 | 15.85197 | 2.13E-35 | 204.7131 | 262.9475 |
Price_KR | -108.553 | 9.84854 | -11.0222 | 1.1E-21 | -127.993 | -89.1125 |
Model1: Sales_KR= 233.8303 -108.553* Price_KR + Error
for every one-unit increase in the Price_KR, there is a corresponding increase in the sales_KR.
both model shows that if price will increase tha there is corresponding decrease in sales