In: Statistics and Probability
| Week | Sales_BF | Sales_KR | Price_BF | Price_KR | 
| 1 | 455 | 135 | 1.61 | 1.02 | 
| 2 | 530 | 63 | 1.34 | 1.29 | 
| 3 | 527 | 41 | 1.38 | 1.63 | 
| 4 | 418 | 71 | 1.44 | 1.53 | 
| 5 | 380 | 34 | 1.62 | 1.71 | 
| 6 | 267 | 57 | 1.67 | 1.59 | 
| 7 | 247 | 56 | 1.69 | 1.59 | 
| 8 | 297 | 72 | 1.66 | 1.62 | 
| 9 | 303 | 92 | 1.65 | 1.42 | 
| 10 | 237 | 168 | 1.69 | 1.32 | 
| 11 | 275 | 85 | 1.66 | 1.41 | 
| 12 | 426 | 58 | 1.38 | 1.51 | 
| 13 | 480 | 120 | 1.39 | 1.60 | 
| 14 | 289 | 153 | 1.42 | 1.17 | 
| 15 | 366 | 177 | 1.43 | 1.07 | 
| 16 | 426 | 56 | 1.40 | 1.13 | 
| 17 | 587 | 106 | 1.23 | 1.43 | 
| 18 | 277 | 93 | 1.29 | 1.28 | 
| 19 | 333 | 90 | 1.66 | 1.29 | 
| 20 | 345 | 38 | 1.38 | 1.21 | 
| 21 | 375 | 75 | 1.45 | 1.48 | 
| 22 | 364 | 60 | 1.61 | 1.50 | 
| 23 | 263 | 72 | 1.63 | 1.35 | 
| 24 | 225 | 229 | 1.69 | 1.16 | 
| 25 | 324 | 218 | 1.65 | 1.08 | 
| 26 | 471 | 43 | 1.59 | 1.44 | 
| 27 | 516 | 34 | 1.57 | 1.54 | 
| 28 | 682 | 34 | 1.06 | 1.58 | 
| 29 | 579 | 24 | 1.12 | 1.72 | 
| 30 | 403 | 37 | 1.29 | 1.44 | 
| 31 | 446 | 33 | 1.58 | 1.63 | 
| 32 | 383 | 52 | 1.58 | 1.62 | 
| 33 | 376 | 48 | 1.59 | 1.64 | 
| 34 | 453 | 39 | 1.61 | 1.59 | 
| 35 | 414 | 34 | 1.58 | 1.60 | 
| 36 | 481 | 33 | 1.58 | 1.50 | 
| 37 | 440 | 28 | 1.32 | 1.23 | 
| 38 | 400 | 54 | 1.39 | 1.34 | 
| 39 | 406 | 211 | 1.58 | 1.26 | 
| 40 | 376 | 54 | 1.57 | 1.33 | 
| 41 | 381 | 46 | 1.37 | 1.31 | 
| 42 | 293 | 52 | 1.49 | 1.26 | 
| 43 | 398 | 76 | 1.60 | 1.35 | 
| 44 | 336 | 62 | 1.61 | 1.36 | 
| 45 | 330 | 46 | 1.64 | 1.39 | 
| 46 | 354 | 64 | 1.58 | 1.16 | 
| 47 | 564 | 62 | 1.38 | 1.19 | 
| 48 | 434 | 72 | 1.41 | 1.22 | 
| 49 | 422 | 42 | 1.36 | 1.38 | 
| 50 | 374 | 41 | 1.39 | 1.41 | 
| 51 | 362 | 68 | 1.39 | 1.36 | 
| 52 | 334 | 113 | 1.47 | 1.29 | 
| 53 | 253 | 106 | 1.49 | 1.33 | 
| 54 | 312 | 89 | 1.46 | 1.21 | 
| 55 | 350 | 69 | 1.41 | 1.21 | 
| 56 | 430 | 81 | 1.41 | 1.23 | 
| 57 | 331 | 68 | 1.44 | 1.33 | 
| 58 | 240 | 80 | 1.61 | 1.35 | 
| 59 | 248 | 63 | 1.75 | 1.35 | 
| 60 | 338 | 90 | 1.73 | 1.40 | 
| 61 | 328 | 54 | 1.75 | 1.46 | 
| 62 | 254 | 33 | 1.77 | 1.79 | 
| 63 | 240 | 51 | 1.79 | 1.52 | 
| 64 | 282 | 81 | 1.75 | 1.53 | 
| 65 | 329 | 55 | 1.75 | 1.58 | 
| 66 | 288 | 66 | 1.77 | 1.44 | 
| 67 | 257 | 50 | 1.76 | 1.48 | 
| 68 | 267 | 37 | 1.74 | 1.57 | 
| 69 | 353 | 31 | 1.75 | 1.83 | 
| 70 | 350 | 35 | 1.72 | 1.89 | 
| 71 | 304 | 45 | 1.74 | 1.86 | 
| 72 | 237 | 27 | 1.76 | 1.98 | 
| 73 | 365 | 41 | 1.74 | 1.85 | 
| 74 | 321 | 57 | 1.76 | 1.80 | 
| 75 | 291 | 114 | 1.74 | 1.25 | 
| 76 | 257 | 166 | 1.78 | 1.11 | 
| 77 | 303 | 102 | 1.80 | 1.24 | 
| 78 | 327 | 71 | 1.73 | 1.38 | 
| 79 | 294 | 62 | 1.78 | 1.65 | 
| 80 | 279 | 72 | 1.76 | 1.52 | 
| 81 | 239 | 62 | 1.76 | 1.40 | 
| 82 | 310 | 58 | 1.77 | 1.54 | 
| 83 | 312 | 60 | 1.78 | 1.52 | 
| 84 | 368 | 58 | 1.73 | 1.53 | 
| 85 | 419 | 66 | 1.42 | 1.46 | 
| 86 | 269 | 172 | 1.79 | 1.14 | 
| 87 | 349 | 120 | 1.77 | 1.26 | 
| 88 | 250 | 54 | 1.80 | 1.61 | 
| 89 | 260 | 77 | 1.77 | 1.67 | 
| 90 | 243 | 69 | 1.81 | 1.50 | 
| 91 | 285 | 91 | 1.75 | 1.53 | 
| 92 | 284 | 65 | 1.79 | 1.48 | 
| 93 | 312 | 94 | 1.49 | 1.44 | 
| 94 | 223 | 143 | 1.84 | 1.15 | 
| 95 | 301 | 131 | 1.80 | 1.22 | 
| 96 | 250 | 91 | 1.79 | 1.53 | 
| 97 | 298 | 87 | 1.76 | 1.39 | 
| 98 | 351 | 114 | 1.47 | 1.05 | 
| 99 | 385 | 137 | 1.79 | 1.17 | 
| 100 | 241 | 57 | 1.78 | 1.41 | 
| 101 | 249 | 69 | 1.84 | 1.45 | 
| 102 | 242 | 59 | 1.86 | 1.58 | 
| 103 | 230 | 55 | 1.87 | 1.73 | 
| 104 | 277 | 75 | 1.84 | 1.53 | 
| 105 | 209 | 66 | 1.82 | 1.55 | 
| 106 | 202 | 69 | 1.82 | 1.50 | 
| 107 | 260 | 46 | 1.76 | 1.42 | 
| 108 | 386 | 84 | 1.44 | 1.49 | 
| 109 | 350 | 105 | 1.43 | 1.18 | 
| 110 | 254 | 84 | 1.75 | 1.69 | 
| 111 | 277 | 67 | 1.74 | 1.74 | 
| 112 | 240 | 151 | 1.78 | 1.27 | 
| 113 | 251 | 128 | 1.74 | 1.37 | 
| 114 | 273 | 91 | 1.77 | 1.71 | 
| 115 | 264 | 59 | 1.77 | 1.74 | 
| 116 | 228 | 43 | 1.77 | 1.76 | 
| 117 | 291 | 36 | 1.76 | 1.82 | 
| 118 | 301 | 41 | 1.76 | 1.85 | 
| 119 | 246 | 82 | 1.77 | 1.39 | 
| 120 | 267 | 39 | 1.73 | 1.36 | 
| 121 | 306 | 44 | 1.75 | 1.74 | 
| 122 | 310 | 54 | 1.72 | 1.80 | 
| 123 | 250 | 55 | 1.74 | 1.74 | 
| 124 | 326 | 53 | 1.67 | 1.44 | 
| 125 | 286 | 65 | 1.74 | 1.44 | 
| 126 | 350 | 34 | 1.71 | 1.88 | 
| 127 | 338 | 72 | 1.70 | 1.68 | 
| 128 | 290 | 150 | 1.76 | 1.11 | 
| 129 | 381 | 114 | 1.70 | 1.04 | 
| 130 | 530 | 28 | 1.38 | 1.99 | 
| 131 | 369 | 65 | 1.67 | 1.71 | 
| 132 | 256 | 87 | 1.74 | 1.39 | 
| 133 | 228 | 85 | 1.77 | 1.32 | 
| 134 | 330 | 47 | 1.69 | 1.78 | 
| 135 | 319 | 87 | 1.72 | 1.71 | 
| 136 | 358 | 133 | 1.67 | 1.09 | 
| 137 | 467 | 97 | 1.39 | 1.10 | 
| 138 | 354 | 53 | 1.71 | 1.76 | 
| 139 | 482 | 65 | 1.68 | 1.75 | 
| 140 | 370 | 52 | 1.68 | 1.69 | 
| 141 | 356 | 50 | 1.69 | 1.72 | 
| 142 | 369 | 31 | 1.67 | 1.72 | 
| 143 | 441 | 39 | 1.70 | 1.74 | 
| 144 | 527 | 44 | 1.34 | 1.70 | 
| 145 | 421 | 73 | 1.38 | 1.65 | 
| 146 | 313 | 115 | 1.72 | 1.06 | 
| 147 | 326 | 88 | 1.71 | 1.12 | 
| 148 | 332 | 34 | 1.72 | 1.74 | 
| 149 | 269 | 79 | 1.74 | 1.69 | 
| 150 | 416 | 99 | 1.66 | 1.09 | 
| 151 | 516 | 84 | 1.40 | 1.16 | 
| 152 | 451 | 56 | 1.57 | 1.71 | 
| 153 | 415 | 51 | 1.69 | 1.74 | 
| 154 | 349 | 35 | 1.71 | 1.84 | 
| 155 | 396 | 52 | 1.70 | 1.72 | 
| 156 | 373 | 43 | 1.73 | 1.76 | 
| 157 | 324 | 58 | 1.43 | 1.53 | 
| 158 | 647 | 91 | 1.66 | 1.36 | 
| 159 | 505 | 69 | 1.71 | 1.37 | 
| 160 | 363 | 49 | 1.67 | 1.72 | 
| 161 | 370 | 31 | 1.69 | 1.71 | 
| 162 | 569 | 49 | 1.39 | 1.75 | 
| 163 | 523 | 37 | 1.36 | 1.73 | 
| 164 | 489 | 48 | 1.67 | 1.44 | 
| 165 | 370 | 95 | 1.70 | 1.35 | 
| 166 | 395 | 162 | 1.70 | 1.28 | 
| 167 | 387 | 141 | 1.71 | 1.33 | 
| 168 | 349 | 82 | 1.73 | 1.40 | 
| 169 | 330 | 33 | 1.69 | 1.74 | 
| 170 | 361 | 44 | 1.71 | 1.69 | 
| 171 | 425 | 49 | 1.72 | 1.89 | 
| 172 | 364 | 46 | 1.69 | 1.37 | 
| 173 | 509 | 80 | 1.68 | 1.35 | 
for model 1
using excel>data>data analysis >regression
we have
| SUMMARY OUTPUT | ||||||
| Regression Statistics | ||||||
| Multiple R | 0.65923 | |||||
| R Square | 0.434584 | |||||
| Adjusted R Square | 0.431277 | |||||
| Standard Error | 69.24122 | |||||
| Observations | 173 | |||||
| ANOVA | ||||||
| df | SS | MS | F | Significance F | ||
| Regression | 1 | 630130.6 | 630130.6 | 131.432 | 6.17E-23 | |
| Residual | 171 | 819833.3 | 4794.347 | |||
| Total | 172 | 1449964 | ||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
| Intercept | 963.778 | 53.79702 | 17.91508 | 4.35E-41 | 857.5862 | 1069.97 | 
| Price_BF | -375.918 | 32.7901 | -11.4644 | 6.17E-23 | -440.644 | -311.193 | 
Model1: Sales_BF = 963.778 -375.918* Price_BF + Error
for every one unit increase in the Price_BF there is corresponding increase in the sales_BF .
For model 2
using excel>data>data analysis >regression
we have
| SUMMARY OUTPUT | ||||||
| Regression Statistics | ||||||
| Multiple R | 0.644487 | |||||
| R Square | 0.415364 | |||||
| Adjusted R Square | 0.411945 | |||||
| Standard Error | 29.36262 | |||||
| Observations | 173 | |||||
| ANOVA | ||||||
| df | SS | MS | F | Significance F | ||
| Regression | 1 | 104743.8 | 104743.8 | 121.4895 | 1.1E-21 | |
| Residual | 171 | 147429.9 | 862.1632 | |||
| Total | 172 | 252173.7 | ||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
| Intercept | 233.8303 | 14.75087 | 15.85197 | 2.13E-35 | 204.7131 | 262.9475 | 
| Price_KR | -108.553 | 9.84854 | -11.0222 | 1.1E-21 | -127.993 | -89.1125 | 
Model1: Sales_KR= 233.8303 -108.553* Price_KR + Error
for every one-unit increase in the Price_KR, there is a corresponding increase in the sales_KR.
both model shows that if price will increase tha there is corresponding decrease in sales