Question

In: Statistics and Probability

Please refer to the Anova and Simple Regression Projects. Your company would like you to complete...

Please refer to the Anova and Simple Regression Projects.

Your company would like you to complete their sales prediction model. They would like you to ascertain if the other variables for which they have data also affect sales. A complete model will have to include advertising expenditures and package design along with the other variables listed above.

1. Create three dummy variables named DA, DB, and DC to capture the effects of the four levels of the categorical variable. Then use Tools > Data Analysis > Regression, to fit a regression of Sales as a function of all the variables in your data set (variables 3 through 7 above), plus the three dummies DA, DB, and DC.
2. Conduct the F-test for model significance and report your results.
3. Does your model appear to be adequate for the purpose intended? (Refer to goodness-of-fit measures, in particular, R², adjusted R², and the standard error of estimate.)
4. Your boss wants to know what you predict will be the effect on company sales if the company increases its price. What will be your response?
5. Do changes in your competitor's price have a significant impact on your company's sales and, if so, at what significance level?
6. Are any of the other variables in your model significant in determining sales at the 5% significance level or better?
7. Your boss also wants to know about the effectiveness of the various advertising methods. Report your findings with regard to this variable.

       95.2    44.6    41.3    0.78    2.50    3.05        D

       86.2    51.6    42.1    0.78    3.09    1.67        A

      112.8    52.9    38.9    0.68    2.57    3.38        C

       95.4    43.5    36.7    0.73    2.24    3.01        D

       95.0    48.7    38.8    0.78    3.04    2.57        C

       96.1    48.7    40.6    0.75    2.45    3.38        D

       82.4    49.2    37.8    0.76    2.70    2.94        B

       91.9    47.7    38.5    0.75    2.67    2.33        C

       91.8    49.7    38.6    0.75    2.54    1.62        D

      115.5    54.5    40.6    0.74    2.55    1.98        C

      111.4    43.4    42.6    0.74    2.64    3.45        C

       79.6    51.2    39.7    0.73    2.80    2.60        A

       90.9    42.7    44.7    0.77    2.73    2.13        A

      105.4    49.9    43.1    0.80    2.68    2.30        D

       74.2    50.3    35.3    0.73    2.88    3.02        B

      115.6    55.1    44.7    0.77    2.57    3.50        B

      115.2    49.2    43.4    0.70    2.35    2.42        B

       92.9    56.9    37.2    0.71    2.86    2.38        D

      113.0    53.4    38.8    0.71    2.45    1.75        B

       78.2    43.4    43.8    0.82    2.69    2.46        A

       92.2    46.2    41.4    0.78    2.98    1.60        B

       90.6    53.5    40.9    0.78    2.77    2.46        D

      120.0    45.6    37.3    0.68    2.38    2.42        C

       95.5    43.4    44.2    0.78    2.54    3.02        B

       96.0    53.5    40.7    0.72    2.51    2.41        B

       74.2    47.2    41.2    0.82    2.78    2.59        B

      105.5    42.7    35.9    0.80    2.30    2.00        C

      125.0    52.9    38.5    0.79    2.32    2.16        B

       86.3    50.7    42.2    0.75    2.76    3.16        B

       84.5    44.5    43.3    0.74    2.76    2.89        B

       80.3    51.8    39.8    0.81    2.86    3.37        A

       80.8    40.9    42.9    0.69    2.83    2.07        B

       99.9    59.4    37.2    0.79    2.64    2.84        B

    116.4    62.7    35.5    0.76    2.65    3.50        C

      112.6    47.7    40.8    0.87    2.33    2.14        D

       79.1    48.1    37.3    0.79    2.54    3.40        B

      111.0    45.3    42.4    0.73    2.73    3.10        C

       81.0    44.5    35.3    0.65    3.07    3.17        C

       79.1    45.6    37.2    0.66    2.46    2.99        D

      104.9    48.3    43.9    0.68    3.17    2.65        C

       89.2    49.7    43.4    0.73    2.98    2.29        B

      114.2    54.5    37.1    0.77    2.65    2.75        C

       96.2    51.9    37.7    0.82    2.74    3.40        B

      109.2    58.7    42.0    0.72    2.74    1.51        D

       37.8    48.3    37.0    0.74    3.41    2.16        A

       73.7    50.8    43.1    0.65    2.97    3.22        B

       64.7    46.8    41.2    0.72    2.97    2.28        A

       94.7    43.5    40.0    0.77    2.36    1.86        B

       48.8    44.9    42.3    0.75    3.32    3.42        A

       93.1    46.2    42.2    0.79    2.29    1.75        A

       78.3    51.1    39.9    0.72    2.95    2.22        B

       83.1    44.9    37.5    0.79    2.45    3.43        B

       69.8    46.4    35.7    0.78    2.93    1.80        D

      121.3    43.9    43.6    0.76    2.84    2.43        C

       84.3    45.0    39.8    0.77    2.65    2.01        D

       89.6    40.5    44.7    0.79    2.84    2.54        A

       89.2    45.1    35.3    0.66    3.16    1.74        C

       75.3    50.1    35.5    0.80    3.04    1.99        B

      120.0    46.8    42.7    0.84    2.87    3.07        C

       89.5    50.8    44.8    0.76    3.11    2.07        D

Solutions

Expert Solution

The header or the column names in the dataset are not give, so i shall assume the first variables to be ssales , please see the excel screenshots below , we goto data > data analysis tab and select regression

The signficance F value is Significance F
8.57865E-18


we formulte the hypothesis as

H0: the model is not signficant
H1: the model is statisitcally significant

as the p value is less than 0.05 , hence we reject the null hypothesis to conclude that the model is statistically signficant

the r2 value is 0.8413 , this means that the model is able to explain about 84.13% variation in sales due to the predictor variables

the adj r2 is 0.816 , which is similar to r2 except that it penalises the model for the number of predictor used in the mdoel

lets say that the price is var4

so we look at the coefficient of price as -36.46 , this essentially means that price as a negative relation with the sales , for every unit increase in the value of price the sales would go down by 36.4 units

please note that we can answer only 4 subparts of a question at a time ,as per the answering guidelines  


Related Solutions

Please refer to the Anova and Simple Regression Projects. Your company would like you to complete...
Please refer to the Anova and Simple Regression Projects. Your company would like you to complete their sales prediction model. They would like you to ascertain if the other variables for which they have data also affect sales. A complete model will have to include advertising expenditures and package design along with the other variables listed above. 1. Create three dummy variables named DA, DB, and DC to capture the effects of the four levels of the categorical variable. Then...
Complete the following answers to the ANOVA summary table for a simple linear regression. SSError=120, SST=480,...
Complete the following answers to the ANOVA summary table for a simple linear regression. SSError=120, SST=480, and dfT=7. Source SS df MS F Regression              Error 120 Total 480 7 SSRegression=? dfRegression=? dfError=? MSRegression=? MSError=? F=? What proportion of variation is accounted for by the simple linear regression?
Refer to the ANOVA table for this regression.   Source SS d.f. MS   Regression 1,035,678    15...
Refer to the ANOVA table for this regression.   Source SS d.f. MS   Regression 1,035,678    15     69,045   Residual 1,415,013    35     40,429      Total 2,450,691    50     (a) State the degrees of freedom for the F test for overall significance.   The degrees of freedom for regression are ________ and for error ______ . (b) Use Appendix F to look up the critical value of F for α = .05. (Round your answer to 2 decimal places.)   F.05 (c-1)...
You will complete a question about Correlation Examples and complete a Simple Linear Regression. For the...
You will complete a question about Correlation Examples and complete a Simple Linear Regression. For the Simple Linear Regression, make sure to complete the following steps: Construct a scatter plot. Find the equation of the regression line. Predict the value of y for each of the x-values. Use this resource: Regression Give an example of two variables that have a positive linear correlation. Give an example of two variables that have a negative linear correlation. Give an example of two...
Problem You will complete a question about Correlation Examples and complete a Simple Linear Regression. For...
Problem You will complete a question about Correlation Examples and complete a Simple Linear Regression. For the Simple Linear Regression, make sure to complete the following steps: Construct a scatter plot. Find the equation of the regression line. Predict the value of y for each of the x-values. Use this resource: Regression Give an example of two variables that have a positive linear correlation. Give an example of two variables that have a negative linear correlation. Give an example of...
1 )True or False? Refer to this ANOVA table from a multiple regression (some information is...
1 )True or False? Refer to this ANOVA table from a multiple regression (some information is missing but can be worked out). There were 5 predictors in the regression model (note: the constant term in the model for the intercept is not a predictor). Source of Variation Sum of Squares Degrees of Freedom Mean Square F Regression 1793.2356 4 Residual 45 59.891102 Total 448.3352 2) Based on the table above, there are ____ observations in the sample a. 50 b....
In a simple linear regression model, the ANOVA F test is a test of model significance...
In a simple linear regression model, the ANOVA F test is a test of model significance (i.e. a test of whether the linear regression model is significantly better than the trivial model yi = β0 + εi). This test can be performed in another way (i.e. by the 'extra sum of squares' or ESS method considering the simple linear regression model as the 'full model' and the trivial model yi = β0 + εi as the 'reduced model'). There is...
Your dad would like to finance you to complete college. He agrees to lend you $12,000...
Your dad would like to finance you to complete college. He agrees to lend you $12,000 on your 21st birthday when you join college and agrees to increase the amount lent each year by $2,000 for the next 3 years. If you have to pay him back $18,000 per year on your 28th birthday to your 32nd birthday, what internal rate of return per year compounded yearly did you end up paying for the amount borrowed from your dad? 3.5%...
What is regression analysis? When would you use it? What is the difference between simple regression...
What is regression analysis? When would you use it? What is the difference between simple regression and multiple regression?
Which of the following is the complete definition of the simple linear regression model?
Which of the following is the complete definition of the simple linear regression model?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT