In: Statistics and Probability
You will complete a question about Correlation Examples and complete a Simple Linear Regression. For the Simple Linear Regression, make sure to complete the following steps:
Construct a scatter plot.
Find the equation of the regression line.
Predict the value of y for each of the x-values.
Use this resource: Regression
Give an example of two variables that have a positive linear correlation. Give an example of two variables that have a negative linear correlation. Give an example of two variables that have no correlation. Height and Weight: The height (in inches) and weights (in pounds) of eleven football players are shown in this table.
Height, x 62 63 66 68 70 72 73 74 74 75 75
Weight, y 195 190 250 220 250 255 260 275 280 295 300
x = 65 inches x = 69 inches x = 71 inches
 For this task i have used R software. Output and syntax are given below
At first i have defined the data using the syntax:
  >
Height.x.<-c(62,63,66,68,70,72,73,74,74,75,75)
>
weight.y.<-c(195,190,250,220,250,255,260,275,280,295,300)
Then i have drawn Scatter plot
Syntax: > plot(Height.x.,weight.y.)
The output is

--------------------------------------------------------------------------------------------------------------------------
Next for the regression line i have used the syntax
  > model<-lm(weight.y.~Height.x.)
> summary(model)
Where 'lm' is the linear model function in R.
The output is
Call:
lm(formula = weight.y. ~ Height.x.)
Residuals:
Min 1Q Median 3Q Max
-15.9904 -9.8632 -0.4992 5.3824 28.5184
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -257.3083 63.7622 -4.035 0.00295 **
Height.x. 7.2544 0.9066 8.002 2.21e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 13.68 on 9 degrees of freedom
Multiple R-squared: 0.8768, Adjusted R-squared: 0.8631
F-statistic: 64.02 on 1 and 9 DF, p-value: 2.21e-05
Hemce from the abouve output equation of regression line is
Weight(y)=-257.3083+ 7.2544 *Height(x)
----------------------------------------------------------------------------------------------------
Prediction of the value of y for each of the x-values.
| x | y | 
| 65 | 214.2272 | 
| 69 | 243.2448 | 
| 71 | 257.7536 | 
| 62 | 192.4641 | 
| 63 | 199.7185 | 
| 66 | 221.4816 | 
| 68 | 235.9904 | 
| 70 | 250.4992 | 
| 72 | 265.0080 | 
| 73 | 272.2624 | 
| 74 | 279.5168 | 
| 74 | 279.5168 | 
| 75 | 286.7712 | 
| 75 | 286.7712 | 
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Height(x) | weight(y) | 
| 64 | 57 | 
| 60 | 60 | 
| 67 | 73 | 
| 59 | 62 | 
| 69 | 68 | 
  
.
cov(x,y)= 18.25, hence cor(x,y)=0.655
----------------------------------------------------------------------------------------------------------------------
| GPA(x) | Hours watching tv(y) | 
| 2.5 | 15 | 
| 2.9 | 13 | 
| 3.5 | 5 | 
| 3.15 | 4 | 
| 3.9 | 12 | 
| (x) | y=x2 | 
| -3 | 9 | 
| -1 | 1 | 
| +1 | 1 | 
| +3 | 9 | 
Here sum of x is zero(=0)
Hence


Hence correlation is zero.
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
PLEASE UPVOTE IF YOU LIKE Y ANSWER.
THANK YOU.