In: Finance
Stock Market Bananarama Stock
Probability Rate of Return Rate of Return
0.2 (4%) (6%)
0.6 8% 10%
0.2 14% 20%
(a) Calculate the expected rate of return for the stock market and for Bananarama’s stock.
Expected rate of return
b) Is Bananarama’s stock more volatile or less volatile that the stock market in genera
(c) Is the Beta for Bananarama’s stock lower or higher that 1.0?
(d) Is Bananarama’s cost of equity higher or lower that the stock market’s average cost of equity?
(e) Why?
Expected Return =Mean Return =SUMof ((Probability)*(Return)) | |||||||||
Variance of Return =Sum of(Probability* (Deviation ^2)) | |||||||||
Deviation =Return -Mean Return | |||||||||
Standard Deviation of Return =Square Root of Variance of Return | |||||||||
ANALYSIS OF STOCK MARKET RETURN | |||||||||
p | R1 | A1=R1*P | D1=R1-6.8 | E1=(D1^2) | F1=p*E1 | ||||
Probability of Return | Return(%) | Probability*Return(%) | Deviation(%) | Deviation Squared(%%) | Probability*Deviation Squared(%%) | ||||
0.2 | -4.00 | -0.80 | -10.80 | 116.64 | 23.328 | ||||
0.6 | 8.00 | 4.80 | 1.20 | 1.44 | 0.864 | ||||
0.2 | 14.00 | 2.80 | 7.20 | 51.84 | 10.368 | ||||
SUM | 6.80 | SUM | 34.56 | ||||||
Expected Return =Mean return | 6.80 | % | |||||||
Variance of Return | 34.56 | %% | |||||||
Standard Deviation of Return =SQRT(34.56)= | 5.88 | % | |||||||
ANALYSIS OF BANANARAMA RETURNS | |||||||||
p | R2 | A2=R2*p | D2=R2-8.8 | E2=(D2^2) | F2=p*E2 | ||||
Probability | Return(%) | Probability*Return(%) | Deviation(%) | Deviation Squared(%%) | Probability*Deviation Squared(%%) | ||||
0.2 | -6 | -1.2 | -14.8 | 219.04 | 43.808 | ||||
0.6 | 10 | 6 | 1.2 | 1.44 | 0.864 | ||||
0.2 | 20 | 4 | 11.2 | 125.44 | 25.088 | ||||
SUM | 8.8 | SUM | 69.76 | ||||||
Expected Return =Mean return | 8.8 | % | |||||||
Variance of Return | 69.76 | %% | |||||||
Standard Deviation of Return =SQRT(69.76)= | 8.35 | % | |||||||
COVARIANCE BETWEEN RETURNS OF Market STOCK RETURN AND BANANARAMA RETURNS | |||||||||
Covariance =SUM of (Probability*Deviation of MarketStock* Deviation of Bananarama) | |||||||||
p | D1=R1-15.5 | D2=R2-16.8 | G=p*D1*D2 | ||||||
Probability | Deviation of Market | Deviation of Bananarama | probability*Deviation Market*Deviation Bananarama | ||||||
0.2 | -10.8 | -14.8 | 31.968 | ||||||
0.6 | 1.2 | 1.2 | 0.864 | ||||||
0.2 | 7.2 | 11.2 | 16.128 | ||||||
SUM | 48.96 | ||||||||
Covariance of return Market and Return Bananarama | 48.96 | %% | |||||||
a) | Expected Return of stock market | 6.80 | % | ||||||
Expected Return of Bananarama | 8.8 | % | |||||||
b) | Standard Deviation of stock market returns | 5.88 | % | ||||||
Standard Deviation of Bananarama stock return | 8.8 | % | |||||||
Standard Deviation of Bananarama stock return is higher than Standard Deviation of Stock Market | |||||||||
Hence,Bananarama Stock is more volatile than market | |||||||||
c) | Beta of Bananarama Stock=Covariance(Market, Banannarama)/(Variance of Market Returns) | ||||||||
A | Covariance of return Market and Return Bananarama | 48.96 | %% | ||||||
B | Variance of Return of stock market | 34.56 | %% | ||||||
C=A/B | Beta of Bananarama Stock | 1.416666667 | |||||||
Beta of Bananarama Stock is higher than 1.0 | |||||||||
d) | Bananrama' s cost of equity is higher than average stock market cost of equity | ||||||||
(e) | As per CAPM equation, | ||||||||
(Expected return of Banarama's Stock)-Rf=Beta *(Rm-Rf) | |||||||||
Rf=Risk Free Rate, Rm=Market rate | |||||||||
Since Beta is greater than 1, | |||||||||
Expected Return of Bananarama's equity is higher than market return | |||||||||
Hence cost of equity of Bananarama is higher | |||||||||