Question

In: Physics

A 1430 kg car is initially at rest on level ground when the engine does 380...

  1. A 1430 kg car is initially at rest on level ground when the engine does 380 000 J of work on it in 10.0 s.

  1. If all of the work is converted into kinetic energy, what is the final speed of the car?

  1. What was the power?

  1. After the car reaches its top speed, the engine cuts out and the car begins to roll up a hill. If the car continues to roll until all of its kinetic energy has been converted into potential energy, what final height will it reach? (ignore friction)

  1. If the car was to brake to a stop on level ground, in the same time as it took to roll to a stop up the hill then what would be the power requirement?

  1. If the hill in part c. had been steeper, how would it affect the final height of the car?

Solutions

Expert Solution


Related Solutions

(c7p50) A 1000- kg car collides with a 1300- kg car that was initially at rest...
(c7p50) A 1000- kg car collides with a 1300- kg car that was initially at rest at the origin of an x-y coordinate system. After the collision, the lighter car moves at 25.0 km/h in a direction of 25 o with respect to the positive x axis. The heavier car moves at 28 km/h at -50 o with respect to the positive x axis. What was the initial speed of the lighter car (in km/h)? Also, What was the initial...
A block of mass M_2 = 6.0 kg is initially at rest on a level table
A block of mass M_2 = 6.0 kg is initially at rest on a level table. A string of negligible mass is connected to M_2, runs over a friction less pulley, of 2.0 kg mass and 0.1m radius and is attached to a hanging mass M_1 =5.0 kg 3m above the ground as shown in the figure A. The system was released and the velocity of M_1 was 2.7 m/s when it was 2.0 m above the ground as shown...
A 5.0 kg mass is initially at rest on a horizontal frictionless surface when a horizontal...
A 5.0 kg mass is initially at rest on a horizontal frictionless surface when a horizontal force along an x axis is applied to the block. The force is given by ? ⃗(?) = (6.0?2 − 2?3)?̂, where the force in in newtons, x is in meters, and the initial position of the block is x = 0. (a) What is the work done in moving the block from x = 1.0 m to x = 3.0 m? (b) What...
A rocket, initially at rest on the ground, accelerates upward with a constant acceleration of 94.0...
A rocket, initially at rest on the ground, accelerates upward with a constant acceleration of 94.0 m/s2 until it reaches a speed of 1.50×102 m/s when the engines are cut off. After that the rocket is in free-fall. What is the maximum height reached by the rocket ? What total time elapses between take-off and the rocket hitting the ground?
A ball with a mass of 0.615 kg is initially at rest. It is struck by...
A ball with a mass of 0.615 kg is initially at rest. It is struck by a second ball having a mass of 0.380 kg , initially moving with a velocity of 0.260 m/s toward the right along the x axis. After the collision, the 0.380 kg ball has a velocity of 0.230 m/s at an angle of 37.4 ∘ above the x axis in the first quadrant. Both balls move on a frictionless, horizontal surface. What is the magnitude...
A 0.6-kg brick is thrown into a 25-kg wagon which is initially at rest
A 0.6-kg brick is thrown into a 25-kg wagon which is initially at rest. If, upon entering, the brick has a velocity of 10 m/s as shown, determine the final velocity of the wagon.  
A block of mass m1 = 1 kg is initially at rest at the top of...
A block of mass m1 = 1 kg is initially at rest at the top of an h1 = 1 meter high ramp, see Fig. 2 below. It slides down the frictionless ramp and collides elastically with a block of unknown mass m2, which is initially at rest. After colliding with m2, mass m1 recoils and achieves a maximum height of only h2 = 0.33 m going back up the frictionless ramp. (HINT: Solving each part in sequence will guide...
A 35.0-kg crate is initially at rest at the top of a ramp that is inclined...
A 35.0-kg crate is initially at rest at the top of a ramp that is inclined at an angle θ = 30◦ above the horizontal. You release the crate and it slides 1.25 m down the ramp before it hits a spring attached to the bottom of the ramp. The coefficient of kinetic friction between the crate and the ramp is 0.500 and the constant of the spring is k = 6000 N/m. What is the net impulse exerted on...
(a) A 2 kg object is at the base of a 35° incline, initially at rest,...
(a) A 2 kg object is at the base of a 35° incline, initially at rest, and sits on top of a spring (k = 240 N/m) which is parallel to the inline. The spring is compressed 0.40 m from its equilibrium position and then released, propelling the object up the incline. While the object slides it experiences a frictional force of 2.00 N. Diagram this situation below. Remember to include coordinate axes. (b) Apply conservation of energy to determine...
Ball Collision. A ball with a mass of 0.600 kg is initially at rest. It is...
Ball Collision. A ball with a mass of 0.600 kg is initially at rest. It is struck by a second ball having a mass of 0.400 kg, initially moving with a velocity of 0.250 m/s toward the right along the x-axis. After the collision, the 0.400 kg ball has a velocity of 0.200 m/s at an angle of 36.9° above the x axis in the first quadrant. Both balls move on a frictionless, horizontal surface. Find the magnitude of the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT