Question

In: Math

integrate from infinity to 1: (1+(sin^2(x))/sqrt (x)) dx

integrate from infinity to 1: (1+(sin^2(x))/sqrt (x)) dx

Solutions

Expert Solution


Related Solutions

I Integrate x^2 e^(-.5(x+1))^2 dx from -infinity to +infinity
I Integrate x^2 e^(-.5(x+1))^2 dx from -infinity to +infinity
I = ∫sqrt(4x^2+20) dx I = ∫(1)/(x^2*sqrt(x^2-a)) dx
I = ∫sqrt(4x^2+20) dx I = ∫(1)/(x^2*sqrt(x^2-a)) dx
to calculate the integral from (-infinty) to (+ infinity) of [x^2 / (x^4 + 4)[ dx...
to calculate the integral from (-infinty) to (+ infinity) of [x^2 / (x^4 + 4)[ dx .   poles, residues.
Calculate the integral from (-infinty) to (+ infinity) of [x^2 / (x^4 + 4)[ dx
Calculate the integral from (-infinty) to (+ infinity) of [x^2 / (x^4 + 4)[ dx
((sqrtx)+1)dy/dx=(ysqrtx)/(x) + sqrt(y/x), y(2)=1
((sqrtx)+1)dy/dx=(ysqrtx)/(x) + sqrt(y/x), y(2)=1
Find dy/dx by implicit differentiation. 11. ycosx=x^2+y^2 13. sqrt(x+y)=x^4+y^4 15. tan(x/y)=x+y 17. sqrt(xy)=1+(x^2)*(y) 19. sin(xy) =...
Find dy/dx by implicit differentiation. 11. ycosx=x^2+y^2 13. sqrt(x+y)=x^4+y^4 15. tan(x/y)=x+y 17. sqrt(xy)=1+(x^2)*(y) 19. sin(xy) = cos(x+y)
Evaluate each integral using trig substitutions 1.) Integral of (3x^5dx)/(sqrt(16-x^2) 2.) Integral of (sqrt(x^2-16)dx)/x 3.) Integral...
Evaluate each integral using trig substitutions 1.) Integral of (3x^5dx)/(sqrt(16-x^2) 2.) Integral of (sqrt(x^2-16)dx)/x 3.) Integral of (6dx)/(16+16x^2)
from monte carlo methods, use importance sampling to estimate P(X > 3) where e^(-sqrt(x)) [sin(x)]^2 and...
from monte carlo methods, use importance sampling to estimate P(X > 3) where e^(-sqrt(x)) [sin(x)]^2 and x > 0
Evaluate the integral. (Use C for the constant of integration.) (x^2-1)/(sqrt(25+x^2)*dx Evaluate the integral. (Use C...
Evaluate the integral. (Use C for the constant of integration.) (x^2-1)/(sqrt(25+x^2)*dx Evaluate the integral. (Use C for the constant of integration.) dx/sqrt(9x^2-16)^3 Evaluate the integral. (Use C for the constant of integration.) 3/(x(x+2)(3x-1))*dx
consider the IVP ( cos(x)sin(x) - xy^2)dx + (1-x^2)ydy = 0 , y(0) = 34 solve...
consider the IVP ( cos(x)sin(x) - xy^2)dx + (1-x^2)ydy = 0 , y(0) = 34 solve the IVP answer))) 1156 = ???
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT