Question

In: Statistics and Probability

How is statistical power related to the following concepts: Type I error, Type II error, variance,...

How is statistical power related to the following concepts: Type I error, Type II error, variance, effect size, and sample size.

Solutions

Expert Solution

Statistical power related to effect of size : As the effect size increases, the power of a statistical test increases. The effect size, d, is defined as the number of standard deviations between the null mean and the alternate mean.

Statistical power related to Type II error : Due to the Type II error, Statistical Power has been created. Statistical Power is the probability (1-β) of rejecting null hypothesis when it is false, and this null hypothesis should be rejected in order to avoid Type II error. Therefore, one needs to keep the Statistical Power correspondingly high, as the higher our Statistical Power, the fewer Type II errors we can expect.

Statistical power related to Variance : The variability increases, the power of the test of significance decreases. One way to think of this is that a test of significance is like trying to detect the presence of a “signal,” such as the effect of a treatment, and the inherent variability in the response variable is “noise” that will drown out the signal if it is too great. Researchers can’t completely control the variability in the response variable, but they can sometimes reduce it through especially careful data collection and conscientiously uniform handling of experimental units or subjects. The design of a study may also reduce unexplained variability, and one primary reason for choosing such a design is that it allows for increased power without necessarily having exorbitantly costly sample sizes. For example, a matched-pairs design usually reduces unexplained variability by “subtracting out” some of the variability that individual subjects bring to a study. Researchers may do a preliminary study before conducting a full-blown study intended for publication. There are several reasons for this, but one of the more important ones is so researchers can assess the inherent variability within the populations they are studying. An estimate of that variability allows them to determine the sample size they will require for a future test having a desired power. A test lacking statistical power could easily result in a costly study that produces no significant findings.

Statistical power related to Type I error: If all other things are held constant, then as α increases, so does the power of the test. This is because a larger α means a larger rejection region for the test and thus a greater probability of rejecting the null hypothesis. That translates to a more powerful test. The price of this increased power is that as α goes up, so does the probability of a Type I error should the null hypothesis in fact be true.

Statistical power related to Sample size :  As n increases, so does the power of the significance test. This is because a larger sample size narrows the distribution of the test statistic. The hypothesized distribution of the test statistic and the true distribution of the test statistic (should the null hypothesis in fact be false) become more distinct from one another as they become narrower, so it becomes easier to tell whether the observed statistic comes from one distribution or the other. The price paid for this increase in power is the higher cost in time and resources required for collecting more data. There is usually a sort of “point of diminishing returns” up to which it is worth the cost of the data to gain more power, but beyond which the extra power is not worth the price.


Related Solutions

Consider the following statements: i) Power + P(Type II Error) = 1. (ii) If a hypothesis...
Consider the following statements: i) Power + P(Type II Error) = 1. (ii) If a hypothesis test is performed at the 5% significance level, and if the null hypothesis is actually true, then there is a 5% chance that the null hypothesis will be rejected. (iii) If a hypothesis is tested at the 5% significance level with a given data set, then there is a lower chance that the null hypothesis will be rejected than if that same hypothesis is...
What is a Type I Error? What is the impact on Type II Error if we...
What is a Type I Error? What is the impact on Type II Error if we reduce the likelihood of Type I Error? Please upload in Microsoft Word.
Describe what would be a type I error and what would be a type II error:...
Describe what would be a type I error and what would be a type II error: A restaurant claims more than 42% of its new patrons return at least once within a month.
Please provide an example of both a Type I Error and Type II Error. Why is...
Please provide an example of both a Type I Error and Type II Error. Why is it that increasing the sample size reduces the probability of a Type II error to an acceptable level. Please discuss.
What is the difference between Type I and Type II error? How does reducing the likelihood...
What is the difference between Type I and Type II error? How does reducing the likelihood of committing one affect the likelihood of committing the other when the rejection level is adjusted either up or down from .05?
What is the difference between Type I and Type II error? How does reducing the likelihood...
What is the difference between Type I and Type II error? How does reducing the likelihood of committing one affect the likelihood of committing the other when the rejection level is adjusted either up or down from .05?
Which one is the best? Type I error of Type II error? Support your choice as...
Which one is the best? Type I error of Type II error? Support your choice as an industrial engineer
Find the probability of a false positive (Type I error) or false negative (Type II error).
Find the probability of a false positive (Type I error) or false negative (Type II error).
State the hypotheses. Describe a Type I and Type II error in the context of the...
State the hypotheses. Describe a Type I and Type II error in the context of the problem and a consequence of each. Determine which type is most serious. State whether alpha should be set high or low (based on whether or not you feel a Type I error is the most serious or not). The state of Georgia is considering spending $350 million on a computerized mathematics curriculum that for grades 3 – 10. They pilot the program with 250...
For these discussion questions: Define Type I and Type II error and explain their importance in...
For these discussion questions: Define Type I and Type II error and explain their importance in statistical research (5 points). Discuss the use of directional and non-directional hypotheses. How do we make the decision to use directional or non-directional tests? (5 points)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT