In: Statistics and Probability
Information on a packet of seeds claims that 93% of them will
germinate. Of the 220 seeds that I planted, only 187
germinated.
Compute a 95% two-sided Agresti-Coull CI on the proportion of seeds
that germinate. Use as a point estimator p^ the proportion of seeds
that germinated during the experiment.
Round your answers to two decimal places
Level of Significance,   α =   
0.05          
Number of Items of Interest,   x =  
187          
Sample Size,   n =    220  
       
          
       
Sample Proportion ,    p̂ = x/n =   
0.8500          
z -value =   Zα/2 =    1.960   [excel
formula =NORMSINV(α/2)]      
          
       
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.0241          
margin of error , E = Z*SE =    1.960  
*   0.0241   =   0.0472
          
       
95%   Confidence Interval is  
           
Interval Lower Limit = p̂ - E =    0.850  
-   0.0472   =   0.803
Interval Upper Limit = p̂ + E =   0.850  
+   0.0472   =   0.897
          
       
95%   confidence interval is (   80.28%
< p < 89.72% )