Question

In: Mechanical Engineering

Water flows over a horizontally standing plate. The length of the plate is 1.5 m and...

Water flows over a horizontally standing plate. The length of the plate is 1.5 m and its temperature is constant and at 15 ° C. d. The temperature of the water flowing over the plate is 75 ° C and its speed is 0.11 m / sec. According to this, a.) Calculate the speed and temperature boundary layer thickness at the end of the plate. b.) Find the local heat transfer coefficient and heat flux at the end of the plate. c.) Find the average heat transfer coefficient and heat flux at the end of the plate.

Solutions

Expert Solution

The solutiion is shown below

Qfrom here for a given value of K we can find the value of h

local Heat flux at the end of plate

q= h/(Tw - T p)

q= 191.04 *K /(75-15)

q= 3.184 K

C) The average heat transfer flux is twice of local heat transfer flux

H= 2*h

H= 2* 191.04 K= 382.08K

and

Q = heat flux= 2*q= 6.368* K


Related Solutions

A liquid flows tangentially past a flat plate of dimensions total length of 4 m (parallel...
A liquid flows tangentially past a flat plate of dimensions total length of 4 m (parallel to the flow direction) and width of 1.5 m. fluid velocity is 1 m/s (length wise). What is the skin friction drag (shear force) on both sides of the plate? liquid density = 1000 kg/m3, dynamic viscosity = 2 x 10-2 N*s/m2.
Air at 20°C and a velocity of 8 m/s flows over the 4-m length of a...
Air at 20°C and a velocity of 8 m/s flows over the 4-m length of a 4-m wide single surface of a square plate whose temperature is 80°C. (For properties of air, use k = 0.02735 W/m·K, Pr = 0.7228, ν = 1.798 x 10-5 m2 /s ) Given the above information, do the calculations to answer the two MC questions below. Please clearly show/discuss your solution method and calculations. A. __________The rate of heat transfer, Q̇ , from this...
A crossing track was constructed over a water channel with a total length of 1700 m...
A crossing track was constructed over a water channel with a total length of 1700 m and width of 40 m. If you know that the maximum flow that can be carried by the water channel is 400 m3/s over a 25-year storm event. Calculate: a. The probability that the crossing track will flood next year. b. The probability that the crossing track will flood at least once in the next 12 years. c. The probability that the crossing track...
Air flows over a 4 meter long flat plate at a velocity of 8 m/s. Using...
Air flows over a 4 meter long flat plate at a velocity of 8 m/s. Using a spreadsheet, calculate the boundary layer thickness and wall shear stress at 0.1 meter intervals along the plate. Do not plot the wall shear stress at x=0. Use a transition Reynolds number of 5 x 10^5 . (You will need to calculate Rex at each location to determine if the laminar or turbulent correlations should be used.) Generate a spreadsheet table that includes columns...
Final answer only ; Water (10 C) flows with a speed of (V=1.5 m/s) through a...
Final answer only ; Water (10 C) flows with a speed of (V=1.5 m/s) through a horizontal plastic pipe of diameter (D=0.0622 m). The length of the pipe is (L= 30 m). The friction factor is equal to a. f = 0.015 b. f = 0.192 c. f = 0.210 d. f = 0.018 The laminar boundary layer occurs a. Smooth flow b. Rough flow c. Uniform flow d. Random flow A flow of water passing over a smooth thin...
A 1.5 kg solid cylinder (radius = 0.15 m , length = 0.60 m ) is...
A 1.5 kg solid cylinder (radius = 0.15 m , length = 0.60 m ) is released from rest at the top of a ramp and allowed to roll without slipping. The ramp is 0.80 m high and 5.0 m long. When the cylinder reaches the bottom of the ramp, what is its total kinetic energy? When the cylinder reaches the bottom of the ramp, what is its rotational kinetic energy? When the cylinder reaches the bottom of the ramp,...
A 2.00-m length of wire is held in an east–west direction and moves horizontally to the...
A 2.00-m length of wire is held in an east–west direction and moves horizontally to the north with a speed of 0.500 m/s. The Earth’s magnetic field in this region is of magnitude 50.0 mT and is directed northward and 53.08 below the horizontal. (a) Calculate the magnitude of the induced emf between the ends of the wire and (b) determine which end is positive.
A thin, uniform bar of length L and mass M is suspended horizontally at rest. It...
A thin, uniform bar of length L and mass M is suspended horizontally at rest. It is suddenly released and, at the same instant, it is struck a sharp blow vertically upwards at one end – the duration of the impulse is negligibly short. (a) Explain the meaning of the equation Fnet = Macom (com stands for center of mass). If we call z the vertical direction, write an equation for zCOM(t), draw a sketch of zCOM(t) vs t, and...
Heat Q5 A vertical flat plate (1.5 m) height and (1 m) width ,with uniform temperature...
Heat Q5 A vertical flat plate (1.5 m) height and (1 m) width ,with uniform temperature (120 oC) one face of this plate expressed to the air with the velocity (6 m/s) to the up direction, the second face expressed to the static air ,the temperature of the air with two side (30oC) . Calculate the heat losses from the plate. The properties of the air at (75 oC),[ ρ=0.998 kg/m3 .Cp=1.009 kJ/kg.oC, υ =2.076 *10-5 m 2 /s ,...
A simple pendulum with mass m = 1.5 kg and length L = 2.49 m hangs...
A simple pendulum with mass m = 1.5 kg and length L = 2.49 m hangs from the ceiling. It is pulled back to an small angle of θ = 9.5° from the vertical and released at t = 0. What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? What is the maximum speed of the pendulum? What is the angular displacement at t = 3.67 s? (give the answer as a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT