Question

In: Computer Science

Translate the following C code into MIPS assembly code. Assume a in $s0, i in $s1,...

Translate the following C code into MIPS assembly code. Assume a in $s0, i in $s1, and base address of b[] in $s2, respectively. Note that the element’s data type in array b is integer (word). Please do not change the C code structure and please comment your MIPS code.

for (i = 100; i>a; i--) {         

b[i] = 16*i;

b[i+1] = 16*(i+1);

b[i+2] = 2*i + 16;

}

Solutions

Expert Solution

loop:
   slt $t1, $s0, $s1       # if a<i set $t1 = 1 else $t1 = 0
   beq $t1, 0, end         # if $t1 is 0, end loop
   sll $t2, $s1, 2           # calculate offset address by multiplying i by 4
   add $t2, $t2, $s2       # adding base address to offset address
   sll $t3, $s1, 4           # calculating 16*i by shifting 4 bits
   sw $t3, ($t2)           # store word to b[i]
   addi $t3, $t3, 16       # add 16 to previously calculated (16*i) , 16 * (i+1) = (16 * i) + 16
   addi $t2, $t2, 4       # increasing address by adding 4
   sw $t3, ($t2)           # store word to b[i+1]
   add $t3, $s1, $s1       # adding i+i = 2*i and storing to $t3
   addi $t3, $t3, 16       # adding 16, so $t3 = ((2*i)+16)
   addi $t2, $t2, 4       # increasing address by adding 4
   sw $t3, ($t2)           # store word to b[i+1]
   addi $s1, $s1, 1       # incrementing i
   j loop                   # back to loop


Related Solutions

4.Translate the following C code to MIPS assembly code. Assume that the value of i is...
4.Translate the following C code to MIPS assembly code. Assume that the value of i is in register $t0, and $s0 holds the base address of the integer MemArray if (i > 10) MemArray[i] = 0; else MemArray[i] = -MemArray[i]; 6.Translate the following C code to MIPS assembly code. Use a minimum number of instructions. Assume that the values of a, b, i, and j are in registers $s0, $s1, $t0, and $t1, respectively. Also, assume that register $s2 holds...
Translate the following C code into MIPS Assembly code, assuming Loop Variable k is in $s0...
Translate the following C code into MIPS Assembly code, assuming Loop Variable k is in $s0 and initially containing 0 . Also assume base of array Arr is in $s3 while ( k < = 10 ) { Arr[k] = k ; k = k + 1; }
2. Translate the following C/Java code to MIPS assembly code. Assume that the values of a,...
2. Translate the following C/Java code to MIPS assembly code. Assume that the values of a, i, and j are in registers $s0, $t0, and $t1, respectively. Assume that register $s2 holds the base address of the array A (add comments to your MIPS code). j = 0; for(i=0 ; i<a ; i++) A[i]=i+j++;
1.) Translate the following C code to MIPS assembly code. Assume that the variables f, g,...
1.) Translate the following C code to MIPS assembly code. Assume that the variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4, respectively. Assume that the base address of the arrays A and B are in registers $s6 and $s7, respectively   B[8] = A[i-j]; 2.Translate the following C code to MIPS assembly code. Assume that the values of v in $a0, k in $a1, temp in $t0.    // leaf procedure that...
Translate following pseudo-code to MIPS assembly language cout << “\n Please input a number for $s0”;...
Translate following pseudo-code to MIPS assembly language cout << “\n Please input a number for $s0”; cin >> $s0; cout << “\n Please input a number for $s1”; cin >> $s1; cout << “\n Please input a number for $s2”; cin >> $s2; $t0 = $s0 / 8 - 2 * $s1 + $s2; cout << “\n the Value of the expression “$s0 / 8 - 2 * $s1 + $s2” is ”; cout >> $t0; return;
Translate the following C code to MIPS assembly. The main function and subfunction are translated to...
Translate the following C code to MIPS assembly. The main function and subfunction are translated to two separate .asm files. Finish the assembly code segment for the above requirement. int main() { int x=2; int y=1; int z=0; z=Subfunc(x,y); printf(“Value of z is: %d”, z); } int Subfunc(int x, int y) { int t1=0; t1=x+y+100; return t1;} File 1: .data str: .asciiz "The value of z:" .text #.globl main main: addi $s0, $0,2 #x addi $s1, $0,1 #y addi $s2,...
Compile the following C code to MIPS assembly. a. Assume that i and j are stored...
Compile the following C code to MIPS assembly. a. Assume that i and j are stored in register $s1 and $s2, respectively. i = i – 2 + j; b. Assume base address of Array B and the variable i are stored in registers $s3 and $s1, respectively. B[1] = (B[0] x 4) - I; Explain each step in detail! my professor has the following answer: 1) addi $t0, $s1, -2 add $s1, $$t0, $s2 2) lw $t0, 0 ($s3)...
Translate the following C code to MIPS assembly. int a = 1; int b = 2;...
Translate the following C code to MIPS assembly. int a = 1; int b = 2; if (a<b)           a=a+1; b = b + a; printf("The value of b is: %d", b); Translate the following C code to MIPS assembly. int a = 2; int b = 2; if (a<b)           a=a+1; else           a=a-1; b = b + a; printf("The value of b is: %d", b);
3. Translate the following C code to MIPS assembly code (in two separate files). int main()...
3. Translate the following C code to MIPS assembly code (in two separate files). int main() { printf(“before subroutine!\n”); Subfunc(); printf(“after subroutine!\n!”); } void Subfunc() {printf(“I am subroutine!\n”);} Submission file: Lab4_3a.asm for the main routine and Lab4_3b.asm for the sub-routine.
3. Translate the following C code to MIPS assembly code (in two separate files). int main()...
3. Translate the following C code to MIPS assembly code (in two separate files). int main() { printf(“before subroutine!\n”); Subfunc(); printf(“after subroutine!\n!”); } void Subfunc() {printf(“I am subroutine!\n”);} 4. Translate the following C code to MIPS assembly (in two separate files). Run the program step by step and observe the order of instructions being executed and the value of $sp. int main() { int x=2; z=Subfunc(x); printf(“Value of z is: %d”, z); } int Subfunc(int x) { return x+1;}
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT