In: Operations Management
Calculate the control limits for the X-bar chart with 0.005 probability limits (instead of 3-sigma limits). That is, here the type I error rate (false alarm rate) is now set to α = 0.005. Use Excel for any calculations, not Minitab.
| 
 Day  | 
 x1  | 
 x2  | 
 x3  | 
 x4  | 
 x5  | 
| 
 1  | 
 839  | 
 585  | 
 583  | 
 613  | 
 768  | 
| 
 2  | 
 706  | 
 527  | 
 956  | 
 644  | 
 612  | 
| 
 3  | 
 322  | 
 614  | 
 807  | 
 282  | 
 170  | 
| 
 4  | 
 1001  | 
 904  | 
 419  | 
 522  | 
 430  | 
| 
 5  | 
 259  | 
 811  | 
 847  | 
 603  | 
 572  | 
| 
 6  | 
 681  | 
 523  | 
 665  | 
 397  | 
 873  | 
| 
 7  | 
 799  | 
 874  | 
 553  | 
 173  | 
 296  | 
| 
 8  | 
 263  | 
 585  | 
 546  | 
 445  | 
 455  | 
| 
 9  | 
 591  | 
 637  | 
 739  | 
 927  | 
 825  | 
| 
 10  | 
 372  | 
 997  | 
 496  | 
 283  | 
 641  | 
| 
 11  | 
 633  | 
 371  | 
 425  | 
 625  | 
 752  | 
| 
 12  | 
 294  | 
 522  | 
 599  | 
 740  | 
 468  | 
| 
 13  | 
 714  | 
 600  | 
 738  | 
 694  | 
 610  | 
| 
 14  | 
 311  | 
 829  | 
 216  | 
 447  | 
 506  | 
| 
 15  | 
 720  | 
 446  | 
 393  | 
 431  | 
 707  | 
| 
 16  | 
 306  | 
 550  | 
 633  | 
 845  | 
 394  | 
| 
 17  | 
 561  | 
 574  | 
 370  | 
 495  | 
 580  | 
| 
 18  | 
 431  | 
 500  | 
 580  | 
 349  | 
 626  | 
| 
 19  | 
 404  | 
 791  | 
 773  | 
 576  | 
 1073  | 
| 
 20  | 
 640  | 
 687  | 
 754  | 
 627  | 
 482  | 

Formulas:

Methodology:
Step 1: Find the average of all sample (X-bar)
Step 2: Find the standard deviation of the operation using STDDEVA() formula and select all data.
Step 3: Std. Dev of Sample Mean

n = Sample Size = 5
Step 4: Find the average of sample mean (X -double bar)
Control Limits
Central Limit (CL) = X- double bar = 584.24

We need to find the Z -value for p = 1- 0.005 = 0.995
Z = 2.575

