In: Finance
The price of Build A Fire Corp. stock will be either $52 or $83 at the end of the year. Call options are available with one year to expiration. T-bills currently yield 5 percent. a. Suppose the current price of the company's stock is $60. What is the value of the call option if the exercise price is $50 per share? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) Value of the call option $ b. Suppose the exercise price is $80 and the current price of the company's stock is $60. What is the value of the call option now? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) Value of the call option $
a
| Upmove (U)= High price/current price=83/60=1.3833 | ||||||
| Down move (D)= Low price/current price=52/60=0.8667 | ||||||
| Risk neutral probability for up move | ||||||
| q = (e^(risk free rate*time)-D)/(U-D) | ||||||
| =(e^(0.05*1)-0.8667)/(1.3833-0.8667)=0.3573 | ||||||
| Call option payoff at high price (payoff H) | ||||||
| =Max(High price-strike price,0) | ||||||
| =Max(83-50,0) | ||||||
| =Max(33,0) | ||||||
| =33 | ||||||
| Call option payoff at low price (Payoff L) | ||||||
| =Max(Low price-strike price,0) | ||||||
| =Max(52-50,0) | ||||||
| =Max(2,0) | ||||||
| =2 | ||||||
| Price of call option = e^(-r*t)*(q*Payoff H+(1-q)*Payoff L) | ||||||
| =e^(-0.05*1)*(0.357299*33+(1-0.357299)*2) | ||||||
| =12.44 |
b
| Upmove (U)= High price/current price=83/60=1.3833 | ||||||
| Down move (D)= Low price/current price=52/60=0.8667 | ||||||
| Risk neutral probability for up move | ||||||
| q = (e^(risk free rate*time)-D)/(U-D) | ||||||
| =(e^(0.05*1)-0.8667)/(1.3833-0.8667)=0.3573 | ||||||
| Call option payoff at high price (payoff H) | ||||||
| =Max(High price-strike price,0) | ||||||
| =Max(83-80,0) | ||||||
| =Max(3,0) | ||||||
| =3 | ||||||
| Call option payoff at low price (Payoff L) | ||||||
| =Max(Low price-strike price,0) | ||||||
| =Max(52-80,0) | ||||||
| =Max(-28,0) | ||||||
| =0 | ||||||
| Price of call option = e^(-r*t)*(q*Payoff H+(1-q)*Payoff L) | ||||||
| =e^(-0.05*1)*(0.357299*3+(1-0.357299)*0) | ||||||
| =1.02 |