In: Math
The table represents the answers of 80 respondents to
the survey “How much sports
trainings do you have every year?” carried out among college
students. Construct a stem-and-leaf
diagram for the data. Calculate the median and quartiles of these
data.
129 157 154 191 192 142 188 126 128 180
190 166 157 147 155 154 200 128 167 143
131 156 153 168 149 144 155 188 149 142
160 149 184 187 169 161 157 134 122 173
188 183 178 148 135 188 187 166 121 177
169 182 158 169 146 173 133 189 183 143
148 121 181 145 189 120 122 189 146 190
128 142 189 131 199 182
197 148 157 140
Here to construct stem and leaf diagram , we have considered , stem unit = 10 and leaf unit = 1.
Stem | Leaf |
12 | 0 1 1 2 2 6 8 8 8 9 |
13 | 1 1 3 4 5 |
14 | 0 2 2 2 3 3 4 5 6 6 7 8 8 8 9 9 9 |
15 | 3 4 4 5 5 6 7 7 7 7 8 |
16 | 0 1 6 6 7 8 9 9 9 |
17 | 3 3 7 8 |
18 | 0 1 2 2 3 3 4 7 7 8 8 8 8 9 9 9 9 |
19 | 0 0 1 2 7 9 |
20 | 0 |
Here is list of sorted data set values in ascending order, and their five number summary.
Location | Training | Five Number Summary |
1 | 120 | <-- Minimum = 120 |
2 | 121 | |
3 | 121 | |
4 | 122 | |
5 | 122 | |
6 | 126 | |
7 | 128 | |
8 | 128 | |
9 | 128 | |
10 | 129 | |
11 | 131 | |
12 | 131 | |
13 | 133 | |
14 | 134 | |
15 | 135 | |
16 | 140 | |
17 | 142 | |
18 | 142 | |
19 | 142 | |
20 | 143 | First Quartile = mid value of first half of ordered data set = 20th + 21st location value / 2 = (143+143)/2= 143 |
21 | 143 | |
22 | 144 | |
23 | 145 | |
24 | 146 | |
25 | 146 | |
26 | 147 | |
27 | 148 | |
28 | 148 | |
29 | 148 | |
30 | 149 | |
31 | 149 | |
32 | 149 | |
33 | 153 | |
34 | 154 | |
35 | 154 | |
36 | 155 | |
37 | 155 | |
38 | 156 | |
39 | 157 | |
40 | 157 | Median = Values at mid location for sorted data value i.e. At 40th and 41st location = (157 + 157 ) / 2 = 157 |
41 | 157 | |
42 | 157 | |
43 | 158 | |
44 | 160 | |
45 | 161 | |
46 | 166 | |
47 | 166 | |
48 | 167 | |
49 | 168 | |
50 | 169 | |
51 | 169 | |
52 | 169 | |
53 | 173 | |
54 | 173 | |
55 | 177 | |
56 | 178 | |
57 | 180 | |
58 | 181 | |
59 | 182 | |
60 | 182 | Third Quartile = mid value of second half of ordered data set = 60th + 61st location value / 2 = (182+183)/2= 182.5 |
61 | 183 | |
62 | 183 | |
63 | 184 | |
64 | 187 | |
65 | 187 | |
66 | 188 | |
67 | 188 | |
68 | 188 | |
69 | 188 | |
70 | 189 | |
71 | 189 | |
72 | 189 | |
73 | 189 | |
74 | 190 | |
75 | 190 | |
76 | 191 | |
77 | 192 | |
78 | 197 | |
79 | 199 | |
80 | 200 | <-- Maximum = 200 |
Here is summary of median and quartiles.
Median = average values of mid location for sorted data value i.e. At 40th and 41st location = (157 + 157 ) / 2 = 157
First Quartile = mid value of first half of ordered data set = 20th + 21st location value / 2 = (143+143)/2= 143
Third Quartile = mid value of second half of ordered data set = 60th + 61st location value / 2 = (182+183)/2= 182.5
Interquartile range = Third quartile value - First Quartile Value .
Interquartile range = 182.5 - 143= 39.5