Determine the solution of the following equation mod N.
1.7x≡2 mod 15, where N= 15
2.x≡8 mod 11, x≡3 mod 19, where N= 209
3.x≡2 mod 7, x≡2 mod 11, x≡1 mod 13, where= 1001
let p = 1031, Find the number of solutions to the equation x^2
-2 y^2=1 (mod p), i.e., the number of elements (x,y),
x,y=0,1,...,p-1, which satisfy x^2 - 2 y^2=1 (mod p)
1. Use backward substitution to solve:
x=8 (mod 11)
x=3 (mod 19)
2. Fine the subgroup of Z24 (the operation is addition) generates by the element 20.
3. Find the order of the element 5 in (z/7z)
a) Use Fermat’s little theorem to compute 52003 mod 7,52003 mod 11, and 52003 mod 13.
b) Use your results from part (a) and the Chinese remaindertheorem to find 52003 mod 1001. (Note that1001 = 7 ⋅ 11 ⋅ 13.)
0 mod 35 = 〈0 mod 5, 0 mod 7〉 12 mod 35 = 〈2 mod 5, 5 mod 7〉 24
mod 35 = 〈4 mod 5, 3 mod 7〉
1 mod 35 = 〈1 mod 5, 1 mod 7〉 13 mod 35 = 〈3 mod 5, 6 mod 7〉 25 mod
35 = 〈0 mod 5, 4 mod 7〉
2 mod 35 = 〈2 mod 5, 2 mod 7〉 14 mod 35 = 〈4 mod 5, 0 mod 7〉...