In: Finance
~~~In Excel~~~~
Question 1. A US-Treasury bond with face value of $1,000 pays interest at an annual rate of 5%. Coupons are paid twice per year.
a. If this bond has 4 years to mature, what is the price of the bond if current yield to maturity is 4%? Calculate this by finding the value of coupons and principal separately. (12)
b. If the coupon were instead paid once per year, what would be the price of the bond?
~~~In Excel~~~~
| 1) | |||||||||||||
| a. | Price of Bond | $ 1,036.63 | |||||||||||
| Working: | |||||||||||||
| Price of bond is the present value of cash flows from bond. | |||||||||||||
| i. | Par Value | 1,000 | |||||||||||
| ii. | Semi annual coupon | 1,000 | x5% x 6/12 | 25 | |||||||||
| III. | Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | |||||||||
| = | (1-(1+0.02)^-8)/0.02 | i | 2% | ||||||||||
| = | 7.3255 | n | 8 | ||||||||||
| iv. | Present value of 1 | = | (1+i)^-n | ||||||||||
| = | (1+0.02)^-8 | ||||||||||||
| = | 0.8535 | ||||||||||||
| v. | Present Value of coupon | 25 | x | 7.3255 | = | 183.14 | |||||||
| Present Value of Par Value | 1,000 | x | 0.8535 | = | 853.49 | ||||||||
| Current Price of Bond | 1,036.63 | ||||||||||||
| b. | Price of Bond | $ 1,036.30 | |||||||||||
| Working: | |||||||||||||
| Price of bond is the present value of cash flows from bond. | |||||||||||||
| i. | Par Value | 1,000 | |||||||||||
| ii. | Annual coupon | 1,000 | x5% | 50 | |||||||||
| III. | Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | |||||||||
| = | (1-(1+0.04)^-4)/0.04 | i | 4% | ||||||||||
| = | 3.6299 | n | 4 | ||||||||||
| iv. | Present value of 1 | = | (1+i)^-n | ||||||||||
| = | (1+0.04)^-4 | ||||||||||||
| = | 0.8548 | ||||||||||||
| v. | Present Value of coupon | 50 | x | 3.6299 | = | 181.49 | |||||||
| Present Value of Par Value | 1,000 | x | 0.8548 | = | 854.80 | ||||||||
| Current Price of Bond | 1,036.30 | ||||||||||||