In: Finance
~~~In Excel~~~~
Question 1. A US-Treasury bond with face value of $1,000 pays interest at an annual rate of 5%. Coupons are paid twice per year.
a. If this bond has 4 years to mature, what is the price of the bond if current yield to maturity is 4%? Calculate this by finding the value of coupons and principal separately. (12)
b. If the coupon were instead paid once per year, what would be the price of the bond?
~~~In Excel~~~~
1) | |||||||||||||
a. | Price of Bond | $ 1,036.63 | |||||||||||
Working: | |||||||||||||
Price of bond is the present value of cash flows from bond. | |||||||||||||
i. | Par Value | 1,000 | |||||||||||
ii. | Semi annual coupon | 1,000 | x5% x 6/12 | 25 | |||||||||
III. | Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | |||||||||
= | (1-(1+0.02)^-8)/0.02 | i | 2% | ||||||||||
= | 7.3255 | n | 8 | ||||||||||
iv. | Present value of 1 | = | (1+i)^-n | ||||||||||
= | (1+0.02)^-8 | ||||||||||||
= | 0.8535 | ||||||||||||
v. | Present Value of coupon | 25 | x | 7.3255 | = | 183.14 | |||||||
Present Value of Par Value | 1,000 | x | 0.8535 | = | 853.49 | ||||||||
Current Price of Bond | 1,036.63 | ||||||||||||
b. | Price of Bond | $ 1,036.30 | |||||||||||
Working: | |||||||||||||
Price of bond is the present value of cash flows from bond. | |||||||||||||
i. | Par Value | 1,000 | |||||||||||
ii. | Annual coupon | 1,000 | x5% | 50 | |||||||||
III. | Present value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | |||||||||
= | (1-(1+0.04)^-4)/0.04 | i | 4% | ||||||||||
= | 3.6299 | n | 4 | ||||||||||
iv. | Present value of 1 | = | (1+i)^-n | ||||||||||
= | (1+0.04)^-4 | ||||||||||||
= | 0.8548 | ||||||||||||
v. | Present Value of coupon | 50 | x | 3.6299 | = | 181.49 | |||||||
Present Value of Par Value | 1,000 | x | 0.8548 | = | 854.80 | ||||||||
Current Price of Bond | 1,036.30 | ||||||||||||