Question

In: Physics

Two trains, A and B, travel in the same direction on the same set of tracks....

Two trains, A and B, travel in the same direction on the same set of tracks. A starts at rest at position d, and B starts with velocity v0 at the origin. A accelerates with acceleration a, and B decelerates with acceleration –a. What is the maximum value of v0 (in terms of d and a) for which the trains don’t collide? Make a rough sketch of x vs. t for both trains in the case where they barely collide.

Solutions

Expert Solution


Related Solutions

Two trains (on separate tracks) travel toward each other, the first at 60.0 km/s and the...
Two trains (on separate tracks) travel toward each other, the first at 60.0 km/s and the second at 40.0 km/s. Both turn on their whistle, the first one emitting a frequency of 200 Hz and the second one emitting a frequency of 220 Hz. What frequencies do they each receive if the speed of sound in air is 330 m/s? Hint: Draw a diagram or do this one in steps. Is the source or the observer moving?
Two trains face each other on adjacent tracks. They are initially at rest, and their front...
Two trains face each other on adjacent tracks. They are initially at rest, and their front ends are 33 m apart. The train on the left accelerates rightward at 1.06 m/s2. The train on the right accelerates leftward at 1.02 m/s2. (a) How far does the train on the left travel before the front ends of the trains pass? m (b) If the trains are each 150 m in length, how long after the start are they completely past one...
Two sinusoidal waves, identical except for phase, travel in the same direction along a string, producing...
Two sinusoidal waves, identical except for phase, travel in the same direction along a string, producing the net wave: y(x,t) = (63.2 cm) * sin(1.4*x - 2.1 s-1*t + 0.24 rad); with x in meters and t in seconds. What is the phase difference between them? Give answer in radians. Do not enter unit. What is their amplitude? What is the wavelength of the two waves? What is their period?
Two cars are moving at 60 mph in the same direction and in the same lane....
Two cars are moving at 60 mph in the same direction and in the same lane. The cars are separated by one car length (20 ft) for each 10 mph. The coefficient of friction (skidding) between the tires and the roadway is 0.6. The reaction time is assumed to be 0.5 sec. a) If the lead car hits a parked truck, what is the speed of the second car when it hits the first (stationary) car? b) If the lead...
There is a positive relationship between two variables if    they move in the same direction....
There is a positive relationship between two variables if    they move in the same direction.    they move in opposite directions.    neither variable moves.    one variable changes and the other does not. One of the most obvious clues to the relative scarcity of a product is    its current market price.    the variations in available sizes.    the quality of the product.    the limited selection of colors. Recall the Application about the harmattan and how...
A train is moving in the forward direction at 0.65c. The tracks are 1.5m apart and...
A train is moving in the forward direction at 0.65c. The tracks are 1.5m apart and the light is at the center point between the tracks. An observer is 3m from the train when the beam is no longer visible (observer not in the beam). What half angular spread of the headlight beam does the train’s engineer see? Express in degrees.
The wave functions of two waves traveling in the same direction are given below. The two...
The wave functions of two waves traveling in the same direction are given below. The two waves have the same frequency, wavelength, and amplitude, but they differ in their phase constant. y1 (x,t) = 2 sin⁡(2πx ‒ 20πt), and y2 (x,t) = 2 sin(2πx ‒ 20πt + φ), where, y is in centimetres, x is in meters, and t is in seconds. Assume that the two waves start to propagate at the same instant, t_0,1 = t_0,2 = 0 sec,...
Given two wave that has the same amplitude, frequency and direction that they are traveling in,...
Given two wave that has the same amplitude, frequency and direction that they are traveling in, BUT they have a phase that is a difference of 2Pi. When one adds both waves up we get: a) Nothing b) A wave with twice the wavelength of the original c) A wave with twice the amplitude of the original d) A wave with twice the frequency of the original e) None of the above
Suppose two parallel lines of current are 0.85A and 0.35A in the same direction, with the...
Suppose two parallel lines of current are 0.85A and 0.35A in the same direction, with the centers of their wires 21cm apart. A -2.04nC particle is fired at 3500m/s in the same direction as both lines of current exactly in between the lines of current. a. Find the force that acts on the particle and in which direction. If a coordinate system will help, you may assume the currents and particle are in the +x direction and the currents lie...
Two airplanes are flying in the same direction in adjacent parallel corridors. At time t =...
Two airplanes are flying in the same direction in adjacent parallel corridors. At time t = 0, the first airplane is 10 km ahead of the second one. Suppose the speed of the first plane (km/hr) is normally distributed with mean 550 and standard deviation 9 and the second plane's speed is also normally distributed with mean and standard deviation 535 and 9, respectively.   a) What is the probability that after 2 hr of flying, the second plane has...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT