Question

In: Physics

A meter stick (?= 1.00 m, ?= 100 g) is made into a physical pendulum by...

A meter stick (?= 1.00 m, ?= 100 g) is made into a physical pendulum by drilling a small hole at a distance ?from the center of mass to become the pivot point. Find the distance ?, if the pendulum is to have a period of ?= 3.00 s.

A.3.79 cm

B.14.6 cm

C.20.4 cm

D.40.9 cm

E.It cannot be done.

Solutions

Expert Solution


Related Solutions

(a) Suppose a meter stick made of steel and one made of invar are the same...
(a) Suppose a meter stick made of steel and one made of invar are the same length at 0°C. What is their difference in length at 45.0°C? The coefficient of thermal expansion is 12 ✕ 10−6/°C for steel and 0.9 ✕ 10−6/°C for invar. (b) Repeat the calculation for two 38.5-m-long surveyor's tapes.
The center of gravity of the meter stick is 49 cm. mass of meter stick 50...
The center of gravity of the meter stick is 49 cm. mass of meter stick 50 g . mass of hanger #1 =5 g. mass of hanger #2 = 5 g. 1.Place the fulcrum at 51 cm. Attach a 200 g mass, plus hanger #1, at 17 cm on the meter stick and calculate where to attach a 200 g mass, plus hanger #2, to balance it. 2.Balance the stick with the fulcrum at its center of gravity. Attach a...
A 0.13 kg meter stick is held perpendicular to a vertical wall by a 2.6 m...
A 0.13 kg meter stick is held perpendicular to a vertical wall by a 2.6 m string going from the wall to the far end of the stick. A. Find the tension of the string B. Find the tension in a 2.0 string.
You attach a meter stick to an oak tree, such that the top of the meter...
You attach a meter stick to an oak tree, such that the top of the meter stick is 2.47 meters above the ground. Later, an acorn falls from somewhere higher up in the tree. If the acorn takes 0.271 seconds to pass the length of the meter stick, how high above the ground was the acorn before it fell, assuming that the acorn did not run into any branches or leaves on the way down? acorn's height: _______m
The figure shows a meter stick lying on the bottom of a 100-cm-long tank with its...
The figure shows a meter stick lying on the bottom of a 100-cm-long tank with its zero mark against the left edge. You look into the tank at a 30 angle, with your line of sight just grazing the upper left edge of the tank. a. What mark do you see on the meter stick if the tank is empty? b. What mark do you see on the meter stick if the tank is half full of water? c. What...
A horizontal meter stick is centered at the bottom of a 4.5-m-deep, 3.9-m-wide pool of water....
A horizontal meter stick is centered at the bottom of a 4.5-m-deep, 3.9-m-wide pool of water. How long does the meter stick appear to be as you look at it from the edge of the pool?
A clock pendulum, made of aluminum, has a period of 1.00 s s and is accurate...
A clock pendulum, made of aluminum, has a period of 1.00 s s and is accurate at 8.0°C. If the clock is used in a climate where the temperature averages 36.0°C what correction is necessary at the end of a 40 day period to the time given by the clock?
a study was made of the effect of the temperature on the volume of 1.00 g...
a study was made of the effect of the temperature on the volume of 1.00 g of helium, with the pressure held at 1 atm. The data for this experiment were: Temp(in Celsius) : -50 -10 0 25 50 100 Volume (in liters): 4.58 5.5 5.6 6.12 6.53 7.66 a. which property is the independent variable? b. prepare a graph using the data c. is there a direct relationship between the volume and the temperature of He at constant pressure...
A solution is made by adding 0.330 g Ca(OH)2(s), 40.0 mL of 1.00 M HNO3, and...
A solution is made by adding 0.330 g Ca(OH)2(s), 40.0 mL of 1.00 M HNO3, and enough water to make a final volume of 75.0 mL. A)Assuming that all of the solid dissolves, what is the pH of the final solution?
•• A meter stick is moving with speed relative to a frame S. (a) What is...
•• A meter stick is moving with speed relative to a frame S. (a) What is the stick’s length, as measured by observers in S, if the stick is parallel to its velocity v? (b) What if the stick is perpendicular to v? (c)What if the stick is at to v, as seen in the stick’s rest frame? [HINT: You can imagine that the meterstick is the hypotenuse of a 30–60–90 triangle of plywood.] (d) What if the stick is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT