In: Math
a)
Let y be the solution of the equation
y ′ = sqrt(1 − y^2) satisfying the condition y ( 0 ) = 0.
Find the value of the function f ( x ) = sqrt(2)*y ( x ) at x = π/4.
(The square root in the right hand side
of the equation takes positive values and − 1 ≤ y ≤ 1)
b)
Let y be the solution of the equation
y ′ = 5 x^4 sin (x^5) satisfying the condition y ( 0 ) = − 1.
Find y ( (π)^1/5 ).
c)
Find the largest value of the parameter r
for which the function y = e^(rx) is a solution of the
equation y ″ − 12 y ′ + 27 y = 0.
d)
Let y ′ = − 3x^2*e^(-x^3) and let y ( 0 ) = 1.
Find ln ( y ( 2 ) ).
e)
Find the smallest value of the parameter r
for which the function y = e^(rx) is a solution of the
equation y ″ − 12 y ′ + 27 y = 0.