In: Finance
A bond has a par value of $1,000, a time to maturity of 20 years, and a coupon rate of 7.10% with interest paid annually. If the current market price is $710, what will be the approximate capital gain of this bond over the next year if its yield to maturity remains unchanged? (Do not round intermediate calculations. Round your answer to 2 decimal places.)
Capital gain ___$
| Step-1:Calculation of yield to maturity | |||||||||||
| Yield to Maturity | = | Average income / Average Investment | |||||||||
| = | (Coupon+(Par Value-Current Price)/Life)/((Par Value + Current Price)/2) | ||||||||||
| = | (71+(1000-710)/20)/((1000+710)/2) | ||||||||||
| = | 10.00% | ||||||||||
| Working: | |||||||||||
| Par Value | $ 1,000 | ||||||||||
| Coupon | $ 1,000 | x 7.10% | = | $ 71 | |||||||
| Step-2:Calculation of Price after year 1 | |||||||||||
| Price of coupon is the present value of cash flow from bond. | |||||||||||
| Present Value of annuity of 1 | = | (1-(1+i)^-n)/i | Where, | ||||||||
| = | (1-(1+0.10)^-19)/0.10 | i | 10% | ||||||||
| = | 8.3649 | n | 19 | ||||||||
| Present Value of 1 | = | (1+i)^-n | |||||||||
| = | (1+0.10)^-19 | ||||||||||
| = | 0.1635 | ||||||||||
| Present Value of coupon | $ 71 | x | 8.3649 | = | 593.91 | ||||||
| Present Value of Par Value | $ 1,000 | x | 0.1635 | = | 163.51 | ||||||
| Price 1 year from now | 757.42 | ||||||||||
| Step-3:Calculation of Capital gain yield over the year | |||||||||||
| Capital Gain yield | = | (Price after 1 - Current Price)/Current Price | |||||||||
| = | (757.42-710)/710 | ||||||||||
| = | 6.68% | ||||||||||
| Thus, | |||||||||||
| Capital gain yield is 6.68% | |||||||||||