In: Statistics and Probability
| 
 Period  | 
 Sales  | 
 Period  | 
 Sales  | 
 Period  | 
 Sales  | 
| 
 1  | 
 437  | 
 13  | 
 395  | 
 25  | 
 527  | 
| 
 2  | 
 582  | 
 14  | 
 512  | 
 26  | 
 537  | 
| 
 3  | 
 646  | 
 15  | 
 535  | 
 27  | 
 477  | 
| 
 4  | 
 499  | 
 16  | 
 556  | 
 28  | 
 474  | 
| 
 5  | 
 422  | 
 17  | 
 725  | 
 29  | 
 709  | 
| 
 6  | 
 381  | 
 18  | 
 597  | 
 30  | 
 663  | 
| 
 7  | 
 423  | 
 19  | 
 442  | 
 31  | 
 748  | 
| 
 8  | 
 397  | 
 20  | 
 408  | 
 32  | 
 698  | 
| 
 9  | 
 519  | 
 21  | 
 478  | 
 33  | 
 609  | 
| 
 10  | 
 655  | 
 22  | 
 526  | 
 34  | 
 530  | 
| 
 11  | 
 538  | 
 23  | 
 625  | 
 35  | 
 550  | 
| 
 12  | 
 518  | 
 24  | 
 681  | 
 36  | 
 609  | 
Plot the above sales data. What type of pattern (e.g. level, linear trend, nonlinear trend, seasonal, intermittent) does this data exhibit?

There is a seasonal pattern in the data.
Use the first 36 past sales data to initialize a Winter’s Multiplicative Seasonal forecasting model. Use linear regression (regression line fitted using all 36 periods) to initialize your model.
| Yt = 468.8 + 4.13×t | 
Forecast the skate board sales for periods 37 through 49 using your part b model; i.e. at the end of period 36, forecast the demand for the next 13 periods.
| Period | Forecast | 
| 37 | 621.608 | 
| 38 | 625.737 | 
| 39 | 629.866 | 
| 40 | 633.995 | 
| 41 | 638.124 | 
| 42 | 642.253 | 
| 43 | 646.382 | 
| 44 | 650.511 | 
| 45 | 654.640 | 
| 46 | 658.769 | 
| 47 | 662.898 | 
| 48 | 667.026 | 
| 49 | 671.155 | 
Now suppose the actual demand in period 37 is 621. Update your Winter’s Multiplicative Seasonal forecasting model parameters using α = 0.20, β = 0.25, γ = 0.15. Forecast the skate board sales for periods 38 through 49 using your updated forecasting model parameters; i.e. at the end of period 37, forecast the demand for the next 12 periods.
Forecasts
| Period | Forecast | Lower | Upper | 
| 38 | 635.065 | 392.478 | 877.652 | 
| 39 | 635.240 | 386.005 | 884.474 | 
| 40 | 622.083 | 365.462 | 878.705 | 
| 41 | 634.386 | 369.701 | 899.070 | 
| 42 | 639.272 | 365.907 | 912.637 | 
| 43 | 639.441 | 356.835 | 922.047 | 
| 44 | 626.191 | 333.837 | 918.545 | 
| 45 | 638.568 | 336.008 | 941.127 | 
| 46 | 643.479 | 330.300 | 956.658 | 
| 47 | 643.642 | 319.471 | 967.813 | 
| 48 | 630.299 | 294.800 | 965.798 | 
| 49 | 642.750 | 295.619 | 989.880 |