In: Statistics and Probability
Period |
Sales |
Period |
Sales |
Period |
Sales |
1 |
437 |
13 |
395 |
25 |
527 |
2 |
582 |
14 |
512 |
26 |
537 |
3 |
646 |
15 |
535 |
27 |
477 |
4 |
499 |
16 |
556 |
28 |
474 |
5 |
422 |
17 |
725 |
29 |
709 |
6 |
381 |
18 |
597 |
30 |
663 |
7 |
423 |
19 |
442 |
31 |
748 |
8 |
397 |
20 |
408 |
32 |
698 |
9 |
519 |
21 |
478 |
33 |
609 |
10 |
655 |
22 |
526 |
34 |
530 |
11 |
538 |
23 |
625 |
35 |
550 |
12 |
518 |
24 |
681 |
36 |
609 |
Plot the above sales data. What type of pattern (e.g. level, linear trend, nonlinear trend, seasonal, intermittent) does this data exhibit?
There is a seasonal pattern in the data.
Use the first 36 past sales data to initialize a Winter’s Multiplicative Seasonal forecasting model. Use linear regression (regression line fitted using all 36 periods) to initialize your model.
Yt = 468.8 + 4.13×t |
Forecast the skate board sales for periods 37 through 49 using your part b model; i.e. at the end of period 36, forecast the demand for the next 13 periods.
Period | Forecast |
37 | 621.608 |
38 | 625.737 |
39 | 629.866 |
40 | 633.995 |
41 | 638.124 |
42 | 642.253 |
43 | 646.382 |
44 | 650.511 |
45 | 654.640 |
46 | 658.769 |
47 | 662.898 |
48 | 667.026 |
49 | 671.155 |
Now suppose the actual demand in period 37 is 621. Update your Winter’s Multiplicative Seasonal forecasting model parameters using α = 0.20, β = 0.25, γ = 0.15. Forecast the skate board sales for periods 38 through 49 using your updated forecasting model parameters; i.e. at the end of period 37, forecast the demand for the next 12 periods.
Forecasts
Period | Forecast | Lower | Upper |
38 | 635.065 | 392.478 | 877.652 |
39 | 635.240 | 386.005 | 884.474 |
40 | 622.083 | 365.462 | 878.705 |
41 | 634.386 | 369.701 | 899.070 |
42 | 639.272 | 365.907 | 912.637 |
43 | 639.441 | 356.835 | 922.047 |
44 | 626.191 | 333.837 | 918.545 |
45 | 638.568 | 336.008 | 941.127 |
46 | 643.479 | 330.300 | 956.658 |
47 | 643.642 | 319.471 | 967.813 |
48 | 630.299 | 294.800 | 965.798 |
49 | 642.750 | 295.619 | 989.880 |