In: Statistics and Probability
Many standard statistical methods that you will study in Part II of this book are intended for use with distributions that are symmetric and have no outliers. These methods start with the mean and standard deviation, x and s. For example, standard methods would typically be used for the IQ and GPA data here data457.dat.
(a) Find x and s for the IQ data. (Round your answers to two decimal places.)
x | = |
s | = |
(b) Find the median IQ score. It is, as we expect, close to the
mean.
(c) Find the mean and median for the GPA data. The two measures of
center differ a bit. (Round your answers to two decimal
places.)
mean | = |
median | = |
What feature of the data (make a stemplot or histogram to see)
explains the difference?
obs gpa iq gender concept 1 10.38 111 2 67 2 3.53 101 2 43 3 9.37 96 2 52 4 8.83 117 2 66 5 9.06 109 1 58 6 10.41 104 2 51 7 9.04 127 2 71 8 4.45 119 2 51 9 9.66 67 1 49 10 9.43 104 2 51 11 8.49 132 1 35 12 10.93 70 1 54 13 9.96 104 2 54 14 8.19 131 1 64 15 7.17 93 1 56 16 10.53 83 1 69 17 6.39 115 1 55 18 7.67 88 1 65 19 4.75 63 2 40 20 6.64 106 1 66 21 8.27 88 2 55 22 5.21 75 2 20 24 7.47 91 1 56 26 9.05 70 2 68 27 8.99 103 1 69 28 6.76 80 2 70 29 6.72 107 2 80 30 10.69 112 2 53 31 7.49 103 2 65 32 9.35 125 1 67 33 9.49 80 1 62 34 9.49 112 1 39 35 8.94 84 2 71 36 10.75 100 2 59 37 8.96 85 1 60 38 8.35 106 2 64 39 9.78 109 2 71 40 7.72 84 1 72 41 10.98 83 1 54 43 10.75 111 2 64 44 8.06 98 2 58 45 10.25 87 2 70 46 7.43 119 2 72 47 10.06 114 2 70 48 7.05 77 2 47 50 6.53 113 2 52 51 7.17 89 1 46 52 6.8 113 2 66 53 5.67 68 2 67 54 7.84 137 2 63 55 8.68 98 2 53 56 8.9 123 2 67 57 10.41 111 2 61 58 9.62 96 1 54 59 8.77 99 1 60 60 10.72 95 1 60 61 3.49 105 2 63 62 10.02 92 2 30 63 4.01 97 2 54 64 7.52 94 2 66 65 4.12 94 2 44 68 9.06 113 2 49 69 10.23 94 1 44 71 10.57 89 2 67 72 4.4 83 1 64 74 9.99 107 2 73 76 10.17 122 2 59 77 9.64 113 1 37 78 10.54 121 1 63 79 9.88 112 2 36 80 7.32 88 1 64 83 8.3 76 2 42 84 10.92 91 1 28 85 4.48 79 1 60 86 9.93 111 1 70 87 7.77 102 2 51 88 9.19 86 1 21 89 9.87 107 2 56
Many standard statistical methods that you will study in Part II of this book are intended for use with distributions that are symmetric and have no outliers. These methods start with the mean and standard deviation, x and s. For example, standard methods would typically be used for the IQ and GPA data here data457.dat.
Descriptive statistics |
||
gpa |
iq |
|
count |
78 |
78 |
mean |
8.4035 |
99.50 |
sample standard deviation |
1.9835 |
16.51 |
sample variance |
3.9343 |
272.69 |
minimum |
3.49 |
63 |
maximum |
10.98 |
137 |
range |
7.49 |
74 |
1st quartile |
7.3475 |
88.00 |
median |
8.9500 |
100.50 |
3rd quartile |
9.9525 |
111.75 |
interquartile range |
2.6050 |
23.75 |
mode |
9.0600 |
111.00 |
(a) Find x and s for the IQ data. (Round your answers to two decimal places.)
x |
=99.50 |
s |
=16.51 |
(b) Find the median IQ score. It is, as we expect, close to the
mean.
Median= 100.50
(c) Find the mean and median for the GPA data. The two measures of
center differ a bit. (Round your answers to two decimal
places.)
mean |
=8.40 |
median |
=8.95 |
What feature of the data (make a stemplot or histogram to see)
explains the difference?
Stem and Leaf plot for |
gpa |
||||
stem unit = |
1 |
||||
leaf unit = |
0.1 |
||||
Frequency |
Stem |
Leaf |
|||
2 |
3 |
4 5 |
|||
6 |
4 |
0 1 4 4 4 7 |
|||
2 |
5 |
2 6 |
|||
6 |
6 |
3 5 6 7 7 8 |
|||
12 |
7 |
0 1 1 3 4 4 4 5 6 7 7 8 |
|||
13 |
8 |
0 1 2 3 3 4 6 7 8 9 9 9 9 |
|||
19 |
9 |
0 0 0 0 1 3 3 4 4 4 6 6 6 7 8 8 9 9 9 |
|||
18 |
10 |
0 0 1 2 2 3 4 4 5 5 5 6 7 7 7 9 9 9 |
|||
Total =78 |
The distribution of GPA is negatively skewed. Therefore mean is less tha median.
Stem and Leaf plot for |
iq |
||||
stem unit = |
10 |
||||
leaf unit = |
1 |
||||
Frequency |
Stem |
Leaf |
|||
3 |
6 |
3 7 8 |
|||
6 |
7 |
0 0 5 6 7 9 |
|||
15 |
8 |
0 0 3 3 3 4 4 5 6 7 8 8 8 9 9 |
|||
14 |
9 |
1 1 2 3 4 4 4 5 6 6 7 8 8 9 |
|||
16 |
10 |
0 1 2 3 3 4 4 4 5 6 6 7 7 7 9 9 |
|||
16 |
11 |
1 1 1 1 2 2 2 3 3 3 3 4 5 7 9 9 |
|||
5 |
12 |
1 2 3 5 7 |
|||
3 |
13 |
1 2 7 |
|||
Total = 78 |