Question

In: Statistics and Probability

Lazurus Steel Corporation produces iron rods that are supposed to be 33 inches long. The machine...

Lazurus Steel Corporation produces iron rods that are supposed to be 33 inches long. The machine that makes these rods does not produce each rod exactly 33 inches long. The lengths of the rods vary slightly. It is known that when the machine is working properly, the mean length of the rods made on this machine is 33 inches. The standard deviation of the lengths of all rods produced on this machine is always equal to 0.3 inch. The quality control department takes a sample of 23 such rods every week, calculates the mean length of these rods, and makes a 99% confidence interval for the population mean. If either the upper limit of this confidence interval is greater than 33.10 inches or the lower limit of this confidence interval is less than 32.9 inches, the machine is stopped and adjusted. A recent sample of 23 rods produced a mean length of 33.06 inches. Based on this sample, will you conclude that the machine needs an adjustment? Assume that the lengths of all such rods have a normal distribution. Round to two decimal places.

The confidence interval is...

Solutions

Expert Solution

Level of Significance ,    α =    0.010
population std dev ,    σ =    0.3000
Sample Size ,   n =    23
Sample Mean,    x̅ =   33.0600

Level of Significance ,    α =    0.01          
'   '   '          
z value=   z α/2=   2.576   [Excel formula =NORMSINV(α/2) ]      
                  
Standard Error , SE = σ/√n =   0.3000   / √   23   =   0.0626
margin of error, E=Z*SE =   2.5758   *   0.0626   =   0.1611
                  
confidence interval is                   
Interval Lower Limit = x̅ - E =    33.06   -   0.161129   =   32.8989
Interval Upper Limit = x̅ + E =    33.06   -   0.161129   =   33.2211
99%   confidence interval is (   32.90   < µ <   33.22   )

since upper limit is greater than 33.10 so machine need to be adjusted..



Related Solutions

Lazurus Steel Corporation produces iron rods that are supposed to be 36 inches long. The machine...
Lazurus Steel Corporation produces iron rods that are supposed to be 36 inches long. The machine that makes these rods does not produce each rod exactly 36 inches long. The lengths of the rods are normally distributed and vary slightly. It is known that when the machine is working properly, the mean length of the rods is 36 inches. The standard deviation of the lengths of all rods produced on this machine is always equal to 0.035 inch. The quality...
Lazurus Steel Corporation produces iron rods that are supposed to be 36 inches long. The machine...
Lazurus Steel Corporation produces iron rods that are supposed to be 36 inches long. The machine that makes these rods does not produce each rod exactly 36 inches long. The lengths of the rods are normally distributed and vary slightly. It is known that when the machine is working properly, the mean length of the rods is 36 inches. The standard deviation of the lengths of all rods produced on this machine is always equal to 0.035 inch. The quality...
A steel factory produces iron rods that are supposed to be 36 inches long. The machine...
A steel factory produces iron rods that are supposed to be 36 inches long. The machine that makes these rods does not produce each rod exactly 36 inches long. The lengths of these rods vary slightly. It is known that when the machine is working properly, the mean length of the rods is 36 inches. According to design, the standard deviation of the lengths of all rods produced on this machine is always equal to .05 inches. The quality control...
A rods manufacturer makes rods with a length that is supposed to be 19 inches. A...
A rods manufacturer makes rods with a length that is supposed to be 19 inches. A quality control technician sampled 21 rods and found that the sample mean length was 19.03 inches and the sample standard deviation was 0.11 inches. The technician claims that the mean rod length is more than 19 inches. What type of hypothesis test should be performed? What is the test statistic? What is the number of degrees of freedom? Does sufficient evidence exist at the...
A. A company produces steel rods. The lengths of the steel rods are normally distributed with...
A. A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 162.4-cm and a standard deviation of 0.6-cm. For shipment, 16 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 162.6-cm. P(¯xx¯ < 162.6-cm) = B. A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 246.8-cm and a standard...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 167.1-cm and a standard deviation of 0.6-cm. For shipment, 6 steel rods are bundled together. Round all answers to four decimal places if necessary. What is the distribution of XX? XX ~ N( , ) What is the distribution of ¯xx¯? ¯xx¯ ~ N( , ) For a single randomly selected steel rod, find the probability that the length is between 166.9-cm...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 195.2-cm and a standard deviation of 0.8-cm. For shipment, 22 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 195.1-cm. P(M < 195.1-cm) = Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 143.6-cm and a standard deviation of 0.8-cm. For shipment, 41 steel rods are bundled together. Round all answers to four decimal places if necessary. What is the distribution of X ? X ~ N(,) What is the distribution of ¯x ? ¯x ~ N(,) For a single randomly selected steel rod, find the probability that the length is between 143.4-cm and 143.5-cm....
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 222-cm and a standard deviation of 1.5-cm. For shipment, 9 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 222.1-cm. P(M < 222.1-cm) = Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 124.7-cm and a standard deviation of 1.6-cm. For shipment, 17 steel rods are bundled together. Find P83, which is the average length separating the smallest 83% bundles from the largest 17% bundles. P83 = -cm Please provide a step-by-step!
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT