Question

In: Statistics and Probability

Subject x y 1 16 25 2 14 31 3 10 16 4 5 18 5...

Subject x y
1 16 25
2 14 31
3 10 16
4 5 18
5 10 22


Find the linear correlation coefficient.

Solutions

Expert Solution

X: X Values
Y: Y Values
Mx: Mean of X Values
My: Mean of Y Values
X - Mx & Y - My: Deviation scores
(X - Mx)2 & (Y - My)2: Deviation Squared
(X - Mx)(Y - My): Product of Deviation Scores

x y X - Mx Y - My (X - Mx)2 (Y - My)2 (X - Mx)(Y - My)
16 25 5 2.6 25 6.76 13
14 31 3 8.6 9 73.96 25.8
10 16 -1 -6.4 1 40.96 6.4
5 18 -6 -4.4 36 19.36 26.4
10 22 -1 -0.4 1 0.16 0.4
Mx: 11.000 My: 22.400 Sum: 72.000 Sum: 141.200 Sum: 72.000


Result Details & Calculation


X Values
∑ = 55
Mean = 11
∑(X - Mx)2 = SSx = 72

Y Values
∑ = 112
Mean = 22.4
∑(Y - My)2 = SSy = 141.2

X and Y Combined
N = 5
∑(X - Mx)(Y - My) = 72

R Calculation
r = ∑((X - My)(Y - Mx)) / √((SSx)(SSy))

r = 72 / √((72)(141.2)) = 0.7141

Meta Numerics (cross-check)
r = 0.7141

The value of R is 0.7141.

This is a moderate positive correlation, which means there is a tendency for high X variable scores go with high Y variable scores (and vice versa).

The value of R2, the coefficient of determination, is 0.5099.


Related Solutions

year X Y 1 10% 15% 2 24% 25% 3 10% 14% 4 -17% -22% 5...
year X Y 1 10% 15% 2 24% 25% 3 10% 14% 4 -17% -22% 5 105 16% calculate the arithmetic average returns variance and standard deviation
Periods ​1% ​2% ​3% ​4% ​5% ​6% ​7% ​8% ​9% ​10% ​12% ​14% ​15% ​16% ​18%...
Periods ​1% ​2% ​3% ​4% ​5% ​6% ​7% ​8% ​9% ​10% ​12% ​14% ​15% ​16% ​18% ​20% 1 0.990 0.980 0.971 0.962 0.952 0.943 0.935 0.926 0.917 0.909 0.893 0.877 0.870 0.862 0.847 0.833 2 0.980 0.961 0.943 0.925 0.907 0.890 0.873 0.857 0.842 0.826 0.797 0.769 0.756 0.743 0.718 0.694 3 0.971 0.942 0.915 0.889 0.864 0.840 0.816 0.794 0.772 0.751 0.712 0.675 0.658 0.641 0.609 0.579 4 0.961 0.924 0.888 0.855 0.823 0.792 0.763 0.735 0.708 0.683 0.636...
Subject ID education memory 1 16 112 2 18 117 3 14 96 4 20 114...
Subject ID education memory 1 16 112 2 18 117 3 14 96 4 20 114 5 16 106 6 14 80 7 14 89 8 12 94 9 18 113 10 13 111 11 17 112 12 18 84 13 12 108 14 16 95 15 12 117 16 14 83 17 8 106 18 12 100 19 21 120 20 15 103 e. Explain the direction and strength of the relationship based on the r. (2 points total:...
Subject ID education memory 1 16 112 2 18 117 3 14 96 4 20 114...
Subject ID education memory 1 16 112 2 18 117 3 14 96 4 20 114 5 16 106 6 14 80 7 14 89 8 12 94 9 18 113 10 13 111 11 17 112 12 18 84 13 12 108 14 16 95 15 12 117 16 14 83 17 8 106 18 12 100 19 21 120 20 15 103 e. Explain the direction and strength of the relationship based on the r. (2 points total:...
Given: x y -5 1 -4 5 -3 4 -2 7 -1 10 0 8 1...
Given: x y -5 1 -4 5 -3 4 -2 7 -1 10 0 8 1 9 2 13 3 14 4 13 5 18 What are the confidence limits (alpha = 0.05) for the true mean value of Y when X = 3?
X 1 3 5 3 4 4 Y 2 5 4 3 4 6 A: Plot...
X 1 3 5 3 4 4 Y 2 5 4 3 4 6 A: Plot the date B: find the line of best fit C: determine ŷ AT x=3 D: Find r and r^2 E: explain r and r^2
Maximize p = x + 8y subject to x + y ≤ 25 y ≥ 10...
Maximize p = x + 8y subject to x + y ≤ 25 y ≥ 10 2x − y ≥ 0 x ≥ 0, y ≥ 0. P=? (X,Y)= ? (NOT BY GRAPHING)
Week 1 2 3 4 5 6 Value 18 14 15 10 17 15 Using the...
Week 1 2 3 4 5 6 Value 18 14 15 10 17 15 Using the naïve method (most recent value) as the forecast for the next week, compute the following measures of forecast accuracy. (a) Mean absolute error If required, round your answer to one decimal place. (b) Mean squared error If required, round your answer to one decimal place. (c) Mean absolute percentage error If required, round your intermediate calculations and final answer to two decimal places. (d)...
ID X Y 1 2 3 2 3 6 3 4 6 4 5 7 5...
ID X Y 1 2 3 2 3 6 3 4 6 4 5 7 5 8 7 6 5 7 7 6 7 8 8 8 9 7 8 10 12 11 Test the significance of the correlation coefficient. Then use math test scores (X) to predict physics test scores (Y).  Do the following: Create a scatterplot of X and Y. Write the regression equation and interpret the regression coefficients (i.e., intercept and slope). Predict the physics score for each....
Given the following dataset x   1   1   2   3   4   5 y   0   2   4   5  ...
Given the following dataset x   1   1   2   3   4   5 y   0   2   4   5   5   3 We want to test the claim that there is a correlation between xand y. The level of cretaine phosphokinase (CPK) in blood samples measures the amount of muscle damage for athletes. At Jock State University, the level of CPK was determined for each of 25 football players and 15 soccer players before and after practice. The two groups of athletes are trained...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT