Question

In: Physics

2) An ideal gas cycle operates via the following 4 stages: 1→2 The gas is compressed...

2) An ideal gas cycle operates via the following 4 stages:
1→2 The gas is compressed adiabatically
2→3 The gas is ignited and heated at constant pressure
3→4 The gas expands adiabatically
4→1 Heat is removed from the gas at constant pressure
a) Draw the cycle on a pressure-volume diagram, labelling the states
1, 2, 3, and 4 and showing where heat enters the cycle and where
heat is removed from the cycle. Identify the highest pressure phigh
and lowest pressure plow in the cycle on the diagram.
[4 marks]
b) Calculate Qin, Qout, and Wnet of the cycle per unit mole of a
monoatomic working-fluid gas if T1 = 300 K, T2 = 600 K, T3 = 800 K,
and T4 = 400 K.
[6 marks]
c) Derive the following expression for the efficiency of the cycle in
terms of pressure ratio rp = phigh/plow.
?௧௛ = 1 − ?௣

ଵିఊ


[10 marks]
d) Briefly explain three ways by which the efficiency of the cycle can
be improved.
[3 marks]
e) For fixed values of T1 and T3, prove that the net amount of work
produced is maximum at the pressure ratio given below:
?௣ = ቀ
்య
்భ


మ(ംషభ)
[7 marks]

Solutions

Expert Solution

Sorry that i won't be able to answer the rest of the question due to lack of clarity in the question.

I Hope this was helpful to some extent,

Thank You.


Related Solutions

For an ideal gas-turbine cycle with two stages of compression and two stages of expansion, the...
For an ideal gas-turbine cycle with two stages of compression and two stages of expansion, the pressure ratio across each stage of the compressor and turbine is 3. The air enters each stage of the compressor at 300 K and each stage of the turbine at 1200K. Using variable specific heats, determine the back work ratio and the thermal efficiency of the cycle, assuming (a)no regenerator is used, (b)a regenerator with 75% effectiveness is used.
Consider an ideal gas-turbine cycle with two stages of compression and two stages of expansion. The...
Consider an ideal gas-turbine cycle with two stages of compression and two stages of expansion. The pressure ratio across each stage of the compressor and turbine is 3. The air enters each stage of the compressor at 300 K and each stage of the turbine at 1200 K. Determine the back work ratio and the thermal efficiency of the cycle, assuming (a) the expansion and compression processes to be isentropic and no regenerator is used, (b) the expansion and compression...
Consider an ideal gas turbine cycle with two stages of compression and two stages of expansion.  The...
Consider an ideal gas turbine cycle with two stages of compression and two stages of expansion.  The pressure ratio across each compressor stage and each turbine stage is 5 to 1. The pressure at the entrance to the first compresor is 100 kPa, the temperature entering each compressor is 25°C (298 K), and the temperature entering each turbine is 1100°C (1373 K). An ideal regenerator is also incorporated into the cycle.  For the air involved, it may be assumed that Cp =...
1) A gas turbine operates on an ideal Joule cycle using air (γ = 1.4; R...
1) A gas turbine operates on an ideal Joule cycle using air (γ = 1.4; R = 0.287 kJ/kg K) as working fluid. Air enters the compressor at temperature of 27◦C and pressure of 1.25 bar and is compressed to 7.6 bar. When the maximum cycle temperature is limited to 800 oC, calculate, (i) the thermal efficiency and work ratio of the cycle (ii) the temperature of air exiting the turbine and the change in specific entropy of turbine process...
Assume you are working on an ideal gas-turbine cycle that has three stages of compression with...
Assume you are working on an ideal gas-turbine cycle that has three stages of compression with intercooling and three stages of expansion with reheating at 100 kPa and 290 K. This system uses a regenerator as well. The pressure ratio across each stage of the compressor and turbine is 3; the air temperature when entering the turbine is 1300 K; and the regenerator operates perfectly. Draw the T − s diagram of this system. Determine the mass flow rate of...
. An ideal gas initially contained at 1 bar and 25ºC, is compressed to a final...
. An ideal gas initially contained at 1 bar and 25ºC, is compressed to a final state of 5 bar and 25ºC. Although the initial and final temperatures are the same, the process is NOT isothermal. Rather, the change of state occurs in two steps. First, the gas is cooled at constant pressure (i.e., 1 bar). Second, the gas is heated at constant volume. Please calculate Q, W, DU, and DH for the two steps. Note: Cp*=29.1 J/mol/K, and 1...
An engine that operates by means of an ideal diatomic ideal gas in a piston with...
An engine that operates by means of an ideal diatomic ideal gas in a piston with 2.70 moles of gas. The gas starts at point A with 3x103 Pa of pressure and 2.5x10-2 m3. To get from B from A, it is expanded by an isobaric process to double the initial volume. From B to C it expands adiabatically until it reaches three times the volume in A. From C to D the pressure decreases without changing the volume and...
One mole of an ideal gas (CP = 5R/2) in a closed piston/cylinder is compressed from...
One mole of an ideal gas (CP = 5R/2) in a closed piston/cylinder is compressed from Ti = 298 K, Pi = 0.1 MPa to Pf = 0.25 MPa by the following pathways. For each pathway, calculate ΔU, ΔH, Q, and WEC: (a) isothermal; (b) constant volume; (c) adiabatic. i need your help as soon as possible please!!! please give me step by step so i can understand it Thank you!
two moles of a monatomic ideal gas are compressed in a cylinder at a constant temperature...
two moles of a monatomic ideal gas are compressed in a cylinder at a constant temperature of 85 c until the original pressure has tripled? a)what is the work done on the gas? b)How much heat is transfered out of the gas? A monatomic ideal gas in a cylinder is held at a constant temperature 230kpa and is cooled and compressed from 1.7 to 1.2 a) what is the internal energy of the gas? b)How much heat is transferred out...
Take temperatures and efficiencies to be exact. A monatomic ideal gas (? = 1.67) is compressed...
Take temperatures and efficiencies to be exact. A monatomic ideal gas (? = 1.67) is compressed adiabatically from a pressure of 3.00
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT