Question

In: Statistics and Probability

Are seat belts effective at saving lives? We wish to examine whether or not the use...

Are seat belts effective at saving lives? We wish to examine whether or not the use of seatbelts reduces fatalities at the alpha=0.10 level of significance. Let Pn represent the proportion of non-seatbelt wearing passengers who were involved in a crash and died and Py represent the proportion of seatbelt wearing passengers who were involved in a crash and died. (Round result to three decimal places)

Note: The data used in this study were obtained through observational study...no experiment was conducted

Which would be correct hypotheses for this test?

H0: Pn = Py, H1: Pn > Py

H0: Pn = Py, H1: Pn < Py

H0: Pn ≠ Py, H1: Pn > Py

H0: Pn = Py, H1: Pn ≠ Py

In a random sample of 482 non-seatbelt wearing passengers involved in a car crash, 43 were killed. In a random sample of 468 seatbelt wearing passengers involved in a car crash, 20 were killed. Find the test statistic:

___________

Give the P-value

____________

Which is the correct result:

Reject the Null Hypothesis

Do not Reject the Null Hypothesis

Which would be the appropriate conclusion?

There is not significant evidence to suggest that seatbelts are effective in reducing fatalities

There is significant evidence to suggest that seatbelts are effective in reducing fatalities

Solutions

Expert Solution

we want to check whether or not the use of seatbelts reduces fatalities,, so its a left tailed hypothesis, i.e. we want to test whether or not Pn is less than Py

So, Null hypothesis

Alternate hypothesis

option A is correct.

We have Pn = (43/482) = 0.089 and Py =20/468 = 0.043

P =

where x1 =43, x2 = 20, n1 = 482 and n2 =468

we get, P= (43+20)/(482+468) = 63/950 = 0.066

Z statistic calculation

z =

settig the given values, we get

z =

this gives us

z = 2.856 (rounded to three decimals) or 2.86 (rounded to 2 decimals)

Now, we have to find the value of

using the identity

so, we can write it as

So, the required p value is 0.0021 (rounded to 4 decimals)

Reject the null hypothesis, as the p value is significant at 0.05 level of significance because p value is less than 0.05.

We can conclude that the seatbelts reduces the number of fatalities significantly

So, option B is correct. "There is significant evidence to suggest that seatbelts are effective in reducing fatalities"


Related Solutions

We are testing people to see if the rate of use of seat belts has changed...
We are testing people to see if the rate of use of seat belts has changed from a previous value of 82%. Suppose that in our random sample of 75 people, we see that 66 have the seat belt fastened. The researcher is interested in α = 0.1 level test. Step 1 State the null and alternative hypotheses. Step 2 Write down the appropriate test statistic and the rejection region of your test (report z critical(s)) Step 3 Compute the...
A researcher wanted to test the claim that, "Seat belts are effective in reducing fatalities." A...
A researcher wanted to test the claim that, "Seat belts are effective in reducing fatalities." A simple random sample of front-seat occupants involved in car crashes is obtained. Among 2823 occupants not wearing seat belts, 31 were killed. Among 7765 occupants wearing seat belts, 16 were killed. If a significance level of 5% is used, which of the following statements gives the correct conclusion? Question 7 options: A) Since , we conclude that this data shows that seat belts are...
The proportion of drivers who use seat belts depends on things like age, sex, and ethnicity....
The proportion of drivers who use seat belts depends on things like age, sex, and ethnicity. As part of a broader study, investigators observed a random sample of 123 female Hispanic drivers in Boston. 68 of those in the sample were observed wearing a seat belt. Find the 95% confidence interval (±0.0001) for the proportion of all female Hispanic drivers in the Boston area who wear seat belts. The 95% confidence interval is from _ to _
We wish to test whether or not there is a difference between two of our production...
We wish to test whether or not there is a difference between two of our production lines in terms of the defect rate. We examine 400 products on Line A and find that 40% are defective, whereas we examine 100 products on Line B and find that 20% are defective. What is the appropriate test statistic here?
Suppose that we wish to test whether the population mean of weights of male students at...
Suppose that we wish to test whether the population mean of weights of male students at a certain college to be larger than 68 kilograms. Consider α = 0.05 level of significance and assume normal population. We have a random sample with size 10, x = 70 and s^2 = 10. 1. Complete the test by finding out its critical region and draw your conclusion. 2. Complete the test by finding out its p-value and draw your conclusion. Is your...
Suppose that we wish to test whether the population mean of weights of male students at...
Suppose that we wish to test whether the population mean of weights of male students at a certain college to be larger than 68 kilograms. Consider α = 0.05 level of significance and assume normal population. We have a random sample with size 10, x = 70 and s^2 = 10. 1. Complete the test by finding out its critical region and draw your conclusion. 2. Complete the test by finding out its p-value and draw your conclusion. Is your...
In this problem we will use a slater determinant to examine a proposed electronic configuration for...
In this problem we will use a slater determinant to examine a proposed electronic configuration for Lithium 1s3 a) Draw an orbital diagram showing two possible ways to achieve this configuration b)using the diagram, write the Slater Determinant for this electronic configuration
Suppose that we wish to assess whether more than 60 percent ofall U.S. households in...
Suppose that we wish to assess whether more than 60 percent of all U.S. households in a particular income class bought life insurance last year. That is, we wish to assess whether p, the proportion of all U.S. households in the income class that bought life insurance last year, exceeds .60. Assume that an insurance survey is based on 1,000 randomly selected U.S. households in the income class and that 640 of these households bought life insurance last year.a)   Based on...
Suppose that we wish to assess whether more than 60 percent of all U.S. households in...
Suppose that we wish to assess whether more than 60 percent of all U.S. households in a particular income class bought life insurance last year. That is, we wish to assess whether p, the proportion of all U.S. households in the income class that bought life insurance last year, exceeds .60. Assume that an insurance survey is based on 1,000 randomly selected U.S. households in the income class and that 640 of these households bought life insurance last year. a)   Assuming...
Suppose that we wish to assess whether more than 60 percent of all U.S. households in...
Suppose that we wish to assess whether more than 60 percent of all U.S. households in a particular income class bought life insurance last year. That is, we wish to assess whether p, the proportion of all U.S. households in the income class that bought life insurance last year, exceeds .60. Assume that an insurance survey is based on 1,000 randomly selected U.S. households in the income class and that 640 of these households bought life insurance last year. a)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT