In: Math
Combinations question:
There are 6 employees working for a company in 6 different locations. After one year, all 6 employees must change their work location.
The new location for each employee is randomly chosen. Every location recieves exaclty one employee.
What are the possibilities for:
a) all employees recieve their old working location back.
b) no employee recieves his old working location.
c) exaclty one employee recieves his old working location.
We are given
n = 6
p = 1/6 = 0.166666667
q = 1 – p = 1 - 0.166666667 = 0.833333333
We have to use binomial distribution.
P(X=x) = nCx*p^x*q^(n – x)
What are the possibilities for:
a) all employees recieve their old working location back.
We have to find P(X=6)
P(X=6) = 6C6*0.166666667^6*0.833333333^(6 – 6)
P(X=6) = 6C6*0.166666667^6*0.833333333^0
P(X=6) = 1*0.166666667^6*1
P(X=6) = 0.000021433471
Required probability = 0.000021433471
b) no employee recieves his old working location.
We have to find P(X=0)
P(X=0) = 6C0*0.166666667^0*0.833333333^(6 – 0)
P(X=0) = 1*1*0.833333333^6
P(X=0) = 0.334897976
Required probability = 0.334897977
c) exaclty one employee recieves his old working location.
WE have to find P(X=1)
P(X=1) = 6C1*0.166666667^1*0.833333333^(6 – 1)
P(X=1) = 6C1*0.166666667^1*0.833333333^5
P(X=1) = 6*0.166666667*0.833333333^5
P(X=1) = 0.401877572
Required probability = 0.401877572