In: Statistics and Probability
A pair of dice is tossed.
Calculate the variance of the sum of the dice?
A) 35/6
B) 37/6
C) 6
D) 19/3
E) 17/3
A pair of dice is rolled; let X be the sum of the two numbers that appear
outcome | X | P(X) |
(1,1) | 2 | 1/36 |
(1,2)(2,1) | 3 | 2/36 |
(1,3)(3,1)(2,2) | 4 | 3/36 |
(1,4)(4,1)(2,3)(3,2) | 5 | 4/36 |
(1,5)(5,1)(2,4)(4,2)(3,3) | 6 | 5/36 |
(1,6)(6,1)(2,5)(5,2)(3,4)(4,3) | 7 | 6/36 |
(2,6)(6,2)(3,5)(5,3),(4,4) | 8 | 5/36 |
(3,6)(6,3)(4,5)(5,4) | 9 | 4/36 |
(4,6)(6,4)(5,5) | 10 | 3/36 |
(5,6)(6,5) | 11 | 2/36 |
(6,6) | 12 | 1/36 |
X | P(X) | X*P(X) | X² * P(X) |
2 | 0.0278 | 0.0556 | 0.1111 |
3 | 0.0556 | 0.1667 | 0.5000 |
4 | 0.0833 | 0.3333 | 1.3333 |
5 | 0.1111 | 0.5556 | 2.7778 |
6 | 0.1389 | 0.8333 | 5.0000 |
7 | 0.1667 | 1.1667 | 8.1667 |
8 | 0.1389 | 1.1111 | 8.8889 |
9 | 0.1111 | 1.0000 | 9.0000 |
10 | 0.0833 | 0.8333 | 8.3333 |
11 | 0.0556 | 0.6111 | 6.7222 |
12 | 0.0278 | 0.3333 | 4.0000 |
P(X) | X*P(X) | X² * P(X) | |
total sum = | 1 | 7 | 54.83 |
mean = E[X] = Σx*P(X) =
7.00000
E [ X² ] = ΣX² * P(X) =
54.8333
variance = E[ X² ] - (E[ X ])² = 5.8333 = 35/6
answer: 35/6