Question

In: Statistics and Probability

1. Suppose that Z1,Z2 are independent standard normal random variables. Let Y1 = Z1 − 2Z2,...

1. Suppose that Z1,Z2 are independent standard normal random variables. Let Y1 = Z1 − 2Z2, Y2 = Z1 − Z2.

(a) Find the joint pdf fY1,Y2(y1,y2). Don’t use the change of variables theorem – all of that work has already been done for you. Instead, evaluate the matrices Σ and Σ−1, then multiply the necessary matrices and vectors to obtain a formula for fY1,Y2(y1,y2) containing no matrices and no vectors.

(b) Find the marginal pdf fY2 (y2). Don’t use integration.

(c) Find the conditional pdf of Y1 given Y2 = 1, that is, fY1|Y2(y1|1). Use (a) and (b), and do the necessary division. By completing the square, identify by name – including pa- rameters – the required conditional pdf.

Solutions

Expert Solution


Related Solutions

Let Z1, Z2, . . . , Zn be independent and identically distributed as standard normal...
Let Z1, Z2, . . . , Zn be independent and identically distributed as standard normal random variables. Prove the distribution of ni=1 Zi2 ∼ χ2n. Thanks!
Suppose Z1 and Z2 are two standard norm random variables. In addition suppose cov(Z1,Z2)=p. Show (Z1-pZ2)/sqrt(1-p^2)and...
Suppose Z1 and Z2 are two standard norm random variables. In addition suppose cov(Z1,Z2)=p. Show (Z1-pZ2)/sqrt(1-p^2)and Z2 are standard normally distributed Show (Z1-pZ2) )/sqrt(1-p^2)and Z2 are independent. Hint : Two random normal variables are independent as long as they are uncorrelated Show (Z1^2+Z2^2-2pZ1Z2)/(1-p^2) is Chai square distribution
1. Let ?1, . . . ?? be ? independent random variables with normal distribution of...
1. Let ?1, . . . ?? be ? independent random variables with normal distribution of expectation 0 and variance ? 2 . Let ?̂︁2 1 be the sample variance ??, ?̂︁2 2 be 1 ? ∑︀ ? ?2 ? . (1) Show that the expectation of ?̂︁2 1 and ?̂︁2 2 are both ? 2 . In other words, both are unbiased point estimates of ? 2 . (2) Write down the p.d.f. of ?̂︁2 1 and ?̂︁2 2....
Let the random variable Z follow a standard normal distribution, and let Z1 be a possible...
Let the random variable Z follow a standard normal distribution, and let Z1 be a possible value of Z that is representing the 90th percentile of the standard normal distribution. Find the value of Z1.
Let ?1 and ?2 be independent normal random variables with ?1~ ?(µ, ? 2 ) and...
Let ?1 and ?2 be independent normal random variables with ?1~ ?(µ, ? 2 ) and ?2~ ?(µ, ? 2 ). Let ?1 = ?1 and ?2 = 2?2 − ?1. a) Find ??1,?2 (?1,?2). b) What are the means, variances, and correlation coefficient for ?1 and ?2? c) Find ?2(?2).
Suppose that a firm produces three outputs y1, y2 and y3 with 3 inputs z1, z2...
Suppose that a firm produces three outputs y1, y2 and y3 with 3 inputs z1, z2 and z3. The input-output requirements matrix is given by A below: A = (3 1 2) (2 5 1) (1 1 3) If the firm wants to produce 10 units of y1, 20 units of y2 and 10 units of y3, how much of z1, z2 and z3 will it require?
A: Suppose two random variables X and Y are independent and identically distributed as standard normal....
A: Suppose two random variables X and Y are independent and identically distributed as standard normal. Specify the joint probability density function f(x, y) of X and Y. Next, suppose two random variables X and Y are independent and identically distributed as Bernoulli with parameter 1 2 . Specify the joint probability mass function f(x, y) of X and Y. B: Consider a time series realization X = [10, 15, 23, 20, 19] with a length of five-periods. Compute the...
Let (Z1, Z2,...Zn) be a random sample from a continuous distribution and let (r1, r2, ......ri,......
Let (Z1, Z2,...Zn) be a random sample from a continuous distribution and let (r1, r2, ......ri,... rj.....rn)  be the ranks. Show that COV (ri, rj )= -( N+1)/12.
Suppose Y1, . . . , Yn are independent random variables with common density fY(y) =...
Suppose Y1, . . . , Yn are independent random variables with common density fY(y) = eμ−y y > μ. Derive a 95% confidence interval for μ. Find the MLE for μ to use as the estimator
Let Y1, Y2, Y3, and Y4be independent, identically distributed random variables from a population with a...
Let Y1, Y2, Y3, and Y4be independent, identically distributed random variables from a population with a mean μ and a variance σ2.  Consider a different estimator of μ: W =  Y1+  Y2+ Y3+ Y4. Let Y1, Y2, Y3, and Y4be independent, identically distributed random variables from a population with a mean μ and a variance σ2.  Consider a different estimator of μ: W = 1/8 Y1+ 1/3 Y2+ 1/6 Y3+ 3/8 Y4. This is an example of a weighted average of the Yi. Show...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT