Question

In: Advanced Math

Let X be Z or Q and define a logical formula p by ∀x ∈ X,...

Let X be Z or Q and define a logical formula p by ∀x ∈ X, ∃y ∈ X, (x < y ∧ [∀z ∈ X, ¬(x < z ∧ z < y)]).

Describe what p asserts about the set X. Find the maximally negated logical formula equivalent to ¬p. Prove that p is true when X = Z and false when X = Q

Solutions

Expert Solution

Given statement , .

Now ,

That is   does not lies between and .

So asserts , " For any number in there is a number in bigger than it and there is no number between them " .

While we negate an statement is been always replaced by and is beenreplaced by that is negation of is and negation of is .

Hence the negation of the given statement is ,

If   .

For each integer if we choose   then   and therre is no integer between and as there is no integer between and .

So the statement is true for

  If  

Suppose then for any choosen such that . there will a rational number between   and as between any two rational number there is an rational number . Explicitly we can choose then the condition will not be satisfies and so the statement is not true for .

.

.

..

.

If you have doubt or need more clarification at any step please comment .


Related Solutions

let R = Z x Z. P be the prime ideal {0} x Z and S...
let R = Z x Z. P be the prime ideal {0} x Z and S = R - P. Prove that S^-1R is isomorphic to Q.
Given the function u(p,q,r)=((p-q)/(q-r)), with p=x+y+z,q=x-y+z, and r=x+y-z, find the partial derivatives au/ax=, au/ay=, au/az=
Given the function u(p,q,r)=((p-q)/(q-r)), with p=x+y+z,q=x-y+z, and r=x+y-z, find the partial derivatives au/ax=, au/ay=, au/az=
prove or disprove using logical equivalences (a) p ∧ (q → r) ⇐⇒ (p → q)...
prove or disprove using logical equivalences (a) p ∧ (q → r) ⇐⇒ (p → q) → r (b) x ∧ (¬y ↔ z) ⇐⇒ ((x → y) ∨ ¬z) → (x ∧ ¬(y → z)) (c) (x ∨ y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ⇐⇒ ¬y → (x ↔ z)
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}....
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}. a) Prove or disprove: A ⊆ X b) Prove or disprove: X ⊆ A c) Prove or disprove: P(X ∪ Y ) ⊆ P(X) ∪ P(Y ) ∪ P(X ∩ Y ) d) Prove or disprove: P(X) ∪ P(Y ) ∪ P(X ∩ Y ) ⊆ P(X ∪ Y )
Let X Geom(p). For positive integers n, k define P(X = n + k | X...
Let X Geom(p). For positive integers n, k define P(X = n + k | X > n) = P(X = n + k) / P(X > n) : Show that P(X = n + k | X > n) = P(X = k) and then briefly argue, in words, why this is true for geometric random variables.
Using logical equivalence laws, show that (((p v ~ q) ⊕ p) v ~p) ⊕ (p...
Using logical equivalence laws, show that (((p v ~ q) ⊕ p) v ~p) ⊕ (p v ~q) is equivalent to p v q. v = or, ~ = not, ⊕ = exclusive or (XOR). Please show the steps with the name of the law beside each step, thanks so much!
Let G = Z x Z and H = {(a, b) in Z x Z |...
Let G = Z x Z and H = {(a, b) in Z x Z | 8 divides a+b} a. Prove directly that H is a normal subgroup in G (use the fact that closed under composition and inverses) b. Prove that G/H is isomorphic to Z8. c. What is the index of [G : H]?
Let p and q be propositions. (i) Show (p →q) ≡ (p ∧ ¬q) →F (ii.)...
Let p and q be propositions. (i) Show (p →q) ≡ (p ∧ ¬q) →F (ii.) Why does this equivalency allow us to use the proof by contradiction technique?
Consider the universal context to be U = Z. Let P(x) be the proposition 1 ≤...
Consider the universal context to be U = Z. Let P(x) be the proposition 1 ≤ x ≤ 3. Let Q(x) be the proposition ∃x ∈Z, x = 2k. Let R(x) be the proposition x2 = 4. Let S(x) be the proposition x = 1. For each of the following statements, write out its logical negation in symbolic notation; then, decide which claim (the original or its negation) is True or False, and why. (a) ∃x ∈ Z, [R(x) ∧...
The curried version of let f (x,y,z) = (x,(y,z)) is let f (x,(y,z)) = (x,(y,z)) Just...
The curried version of let f (x,y,z) = (x,(y,z)) is let f (x,(y,z)) = (x,(y,z)) Just f (because f is already curried) let f x y z = (x,(y,z)) let f x y z = x (y z)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT