Question

In: Electrical Engineering

Consider the cylindrical wire of radius R= 5mm having current density through a cross section varies...

Consider the cylindrical wire of radius R= 5mm having current density through
a cross section varies with radial distance ‘r’ as J= (3x 109 A/m4 ) r2 , and ‘r’ is
in meters. What is the current through the outer portion of the wire between
radial distances r=0.75R and r=R.

Solutions

Expert Solution


Related Solutions

Consider a cylindrical wire of radius R (indefinitely long) that carries a total steady current I...
Consider a cylindrical wire of radius R (indefinitely long) that carries a total steady current I such that there is a constant current density j across the profile of the wire (for the first part of this task, consider just a current density in vacuum) a) in order to calculate the magnetic induction it is suitable to work in cylindrical coordinates. Considering Boundary conditions at ρ→∞, the magnetic induction ca be written as B=B_ρ (ρ,φ,z) e_ ρ + B_ φ(ρ,φ,z)e_...
Consider a cylindrical wire of radius R (indefinitely long) that carries a total steady current I...
Consider a cylindrical wire of radius R (indefinitely long) that carries a total steady current I such that there is a constant current density j across the profile of the wire (for the first part of this task, consider just a current density in vacuum) a) in order to calculate the magnetic induction it is suitable to work in cylindrical coordinates. Considering Boundary conditions at ρ→∞, the magnetic induction ca be written as B=B_ρ (ρ,φ,z) e_ ρ + B_ φ(ρ,φ,z)e_...
The current density inside a long, solid, cylindrical wire of radius a = 5.0 mm is...
The current density inside a long, solid, cylindrical wire of radius a = 5.0 mm is in the direction of the central axis and its magnitude varies linearly with radial distance r from the axis according to J = J0r/a, where J0 = 220 A/m2. Find the magnitude of the magnetic field at a distance (a) r=0, (b) r = 2.7 mm and (c) r=5.0 mm from the center.
2) a). The resistivity of a wire varies with its length area of cross-section mass material...
2) a). The resistivity of a wire varies with its length area of cross-section mass material b) Given the units of a physical quantity. Choose the correct relation (J is for Joule, V is for volt, C is for Coulomb) A) J = CV B) J = VA C) J = C/A D) V = J C c) A charge of 3 C moving in a uniform electric field experiences a force 3000 N. The potential difference between two points...
The figure shows a cross section across a long cylindrical conductor of radius a = 2.97...
The figure shows a cross section across a long cylindrical conductor of radius a = 2.97 cm carrying uniform current 27.5 A. What is the magnitude of the current's magnetic field at radial distance (a) 0, (b) 2.10 cm, (c) 2.97 cm (wire's surface), (d)3.84 cm?
consider a charge Q distributed through out a sphere of radius R with a density: rho=...
consider a charge Q distributed through out a sphere of radius R with a density: rho= A(R-r) where rho is in Coulombs/m^3 0<r<R determine the constant A in terms of Q and R Calculate the electric field inside and outside of the sphere
The inside of a wire has a current density of J (r) = ( 5 /...
The inside of a wire has a current density of J (r) = ( 5 / r ) A/m2 radius of wire = 0.15 m Find magnitude of magnetic field when at a radial distance of 0.05 m away using Ampere's Law.
What is the current in a wire of radius R = 3.58 mm if the magnitude...
What is the current in a wire of radius R = 3.58 mm if the magnitude of the current density is given by (a) Ja = J0r/R and (b) Jb = J0(1 - r/R) in which r is the radial distance and J0 = 5.08 × 10^4 A/m^2? (c) Which function maximizes the current density near the wire’s surface?
Consider a wire of uniform density and mass M shaped into a quarter circle of radius...
Consider a wire of uniform density and mass M shaped into a quarter circle of radius R.The wire is located in the xy plane, with the origin at the focus of the quarter circle (i.e at the center of the circle of which the wire is part). Choose the x axis parallel to the line that connects the endpoints of the wire, so that the y-z plane is a plane of reflection symmetry for the wire. This means that the...
A circular loop of wire having a radius of 6.0 cm carries a current of 0.14...
A circular loop of wire having a radius of 6.0 cm carries a current of 0.14 A. A unit vector parallel to the dipole moment of the loop is given by 0.40i -0.92j. If the loop is located in a magnetic field given by B = (0.40 T)i + (0.35 T)k, A) find the magnitude of the magnetic dipole moment of the loop. B) Find the i component of the torque on the loop. C) Find the j component of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT