Question

In: Computer Science

Use a recursion tree to determine a good asymptotic upper bound on the following recurrences. Use...

  1. Use a recursion tree to determine a good asymptotic upper bound on the following recurrences. Use the substitution method to verify your answer.
    1. T(n) = 3T(n/2) + n.
    2. T(n) = T(n/2) + n2.

Solutions

Expert Solution

A. T(n) = 3T(n/2) + n

Recurssion Tree method:

Upper Bound for the above T(n) = O().

Substitution method:

B. T(n) = T(n/2) + n2

Recurssion Tree method:

Upper Bound for the above T(n) = O(n2).


Related Solutions

Use a recursion tree to determine a good asymptotic upper bound on the following recurrences. Use...
Use a recursion tree to determine a good asymptotic upper bound on the following recurrences. Use the substitution method to verify your answer. T(n) = 3T(n/2) + n. T(n) = T(n/2) + n2.
Use a recursion tree to determine a good asymptotic upper bound on the recurrence ?(?) =...
Use a recursion tree to determine a good asymptotic upper bound on the recurrence ?(?) = 3?(?/3) + ?. Use the substitution method to verify your answer.
Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) =...
Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = 2T(n/3) + 2n. Use the substitution method to verify your answer
Give asymptotic tight bounds for T(n) in each of the following recurrences using recursion tree. a....
Give asymptotic tight bounds for T(n) in each of the following recurrences using recursion tree. a. T(n) = 2T(n − 1) + 1 b. T(n) = t(n − 1) + n c. T(n) = 2T (n/4) + √n
Solve the following recurrence relations: (find an asymptotic upper bound O(?) for each one) a. T(n)...
Solve the following recurrence relations: (find an asymptotic upper bound O(?) for each one) a. T(n) = T(2n/3)+T(n/3) + n^2 b. T(n) = √nT(√n) + n c. T(n) = T(n-1)+T(n/2) + n The base case is that constant size problems can be solved in constant time (O(1)). You can use the induction, substitution or recursion tree method
Use the recursion tree method to determine the asymptoticupper bound of T(n).T(n) satisfies the recurrence T(n)=2T(n-1)+...
Use the recursion tree method to determine the asymptoticupper bound of T(n).T(n) satisfies the recurrence T(n)=2T(n-1)+ c, where c is a positive constant, andT(0)=0.
Use recursion function to derive computation time for Binary Search by drawing a recursion tree diagram...
Use recursion function to derive computation time for Binary Search by drawing a recursion tree diagram and using algebra calculation.
Given the integral 1/x dx upper bound 2 lower bound 1 (a) use simpson's rule to...
Given the integral 1/x dx upper bound 2 lower bound 1 (a) use simpson's rule to approximate the answer with n=4 Formula:f(x)=1/3[f(x0)+4f(x1)+2f(x2)+...+f(xn)]Δx(keep answer to 6 decimals) b)how large is n in order for the error of Simpsons rule for the given integral is no more than 0.000001 Formula: |Es|=(k)(b-a)^5/(180 n^4), where |f^4(x)≤k| please show all work and steps
Recall the following theorem, phrased in terms of least upper bounds. Theorem (The Least Upper Bound...
Recall the following theorem, phrased in terms of least upper bounds. Theorem (The Least Upper Bound Property of R). Every nonempty subset of R that has an upper bound has a least upper bound. A consequence of the Least Upper Bound Property of R is the Archimedean Property. Theorem (Archimedean Property of R). For any x; y 2 R, if x > 0, then there exists n 2 N so that nx > y. Prove the following statements by using...
Derive a Θ-bound on the solution to the following recurrence. using iterative recursion and check your...
Derive a Θ-bound on the solution to the following recurrence. using iterative recursion and check your answer with master theorem result T(n) = T (1/3 n) + log n
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT