In: Statistics and Probability
Determine the regression equatoin for this multiple regression model. Also calculate the adjusted R squared and P value.
Pedictor Variables/Data | ||||
Length (inches) | Braking (ft from 60 mph) | Engine Displacement (liters) | GHG | |
154 | 133 | 1.6 | 6.6 | |
167 | 132 | 1.6 | 6.1 | |
177 | 136 | 1.8 | 6.3 | |
177 | 138 | 2 | 6.6 | |
179 | 137 | 2 | 6.4 | |
188 | 135 | 2 | 8.0 | |
177 | 126 | 2 | 7.7 | |
191 | 136 | 2.3 | 8.0 | |
194 | 140 | 2.4 | 7.7 | |
189 | 137 | 2.4 | 7.3 | |
180 | 135 | 2.5 | 8.3 | |
190 | 136 | 2.5 | 7.1 | |
180 | 140 | 2.5 | 8.0 | |
200 | 131 | 2.7 | 8.7 | |
193 | 134 | 3.3 | 8.7 | |
191 | 128 | 3.5 | 8.3 | |
197 | 139 | 3.5 | 8.0 | |
208 | 145 | 4.6 | 10.2 | |
203 | 143 | 4.6 | 10.2 | |
212 | 140 | 4.6 | 9.6 | |
215 | 143 | 4.6 | 9.6 |
Using Excel we get following output
SUMMARY OUTPUT |
||||||||||
Regression Statistics |
||||||||||
Multiple R |
0.911590634 |
|||||||||
R Square |
0.830997484 |
|||||||||
Adjusted R Square |
0.801173511 |
|||||||||
Standard Error |
0.54976783 |
|||||||||
Observations |
21 |
|||||||||
ANOVA |
||||||||||
df |
SS |
MS |
F |
Significance F |
||||||
Regression |
3 |
25.2647 |
8.421566 |
27.86341 |
8.65122E-07 |
|||||
Residual |
17 |
5.138159 |
0.302245 |
|||||||
Total |
20 |
30.40286 |
||||||||
Coefficients |
Standard Error |
t Stat |
P-value |
|||||||
Intercept |
5.359938521 |
4.559404882 |
1.175579 |
0.255965 |
||||||
Length (inches) |
0.018520385 |
0.016658021 |
1.1118 |
0.281701 |
||||||
Braking (ft from 60 mph) |
-0.02522475 |
0.031380555 |
-0.80383 |
0.43259 |
||||||
Engine Displacement (liters) |
0.910291795 |
0.244316648 |
3.725869 |
0.001681 |
||||||
Using minitab we get following output:
Regression Analysis: GHG versus Length (inches), Braking (ft from, Engine Displacem
Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Regression 3 25.2647 8.4216 27.86 0.000
Length (inches) 1 0.3736 0.3736 1.24 0.282
Braking (ft from 60 mph) 1 0.1953 0.1953 0.65 0.433
Engine Displacement (liters) 1 4.1958 4.1958 13.88 0.002
Error 17 5.1382 0.3022
Total 20 30.4029
Model Summary
S R-sq R-sq(adj) R-sq(pred)
0.549768 83.10% 80.12% 74.04%
Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant 5.36 4.56 1.18 0.256
Length (inches) 0.0185 0.0167 1.11 0.282 4.04
Braking (ft from 60 mph) -0.0252 0.0314 -0.80 0.433 1.50
Engine Displacement (liters) 0.910 0.244 3.73 0.002 4.24
Regression Equation
GHG = 5.36 + 0.0185 Length (inches) - 0.0252 Braking (ft from 60 mph)
+ 0.910 Engine Displacement (liters)
Using above result from minitab and excel we get
Multiple regression model is given by,
GHG = 5.36 + 0.0185 Length (inches) - 0.0252 Braking (ft from 60 mph)
+ 0.910 Engine Displacement (liters) (Rounded value)
OR
GHG = 5.35994 + 0.018520385 Length (inches)-0.02522475 Braking (ft from 60 mph)
+ 0.910291795 Engine Displacement (liters)
Adujested R_Sq is
R-sq(adj)= 80.12%
P value is given by
P-value |
Rounded P-value |
|
Intercept |
0.255965414 |
0.256 |
Length (inches) |
0.281700818 |
0.282 |
Braking (ft from 60 mph) |
0.432590092 |
0.433 |
Engine Displacement (liters) |
0.001680723 |
0.002 |
Steps involve in minitab
Copy data > Stat >Regression > Regression > Fit Regression model > Select Response variable (GHG), Select predictor variable one by one (Length,Braking,Engine Displacement)>ok.
IN Excel
Copy data > Data> Data Analysis > Regression > select Response Range (GHG), select all predictor (Length,Braking,Engine Displacement) >ok