Question

In: Statistics and Probability

Determine the regression equatoin for this multiple regression model. Also calculate the adjusted R squared and...

Determine the regression equatoin for this multiple regression model. Also calculate the adjusted R squared and P value.

Pedictor Variables/Data
Length (inches) Braking (ft from 60 mph) Engine Displacement (liters) GHG
154 133 1.6 6.6
167 132 1.6 6.1
177 136 1.8 6.3
177 138 2 6.6
179 137 2 6.4
188 135 2 8.0
177 126 2 7.7
191 136 2.3 8.0
194 140 2.4 7.7
189 137 2.4 7.3
180 135 2.5 8.3
190 136 2.5 7.1
180 140 2.5 8.0
200 131 2.7 8.7
193 134 3.3 8.7
191 128 3.5 8.3
197 139 3.5 8.0
208 145 4.6 10.2
203 143 4.6 10.2
212 140 4.6 9.6
215 143 4.6 9.6

Solutions

Expert Solution

Using Excel we get following output

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.911590634

R Square

0.830997484

Adjusted R Square

0.801173511

Standard Error

0.54976783

Observations

21

ANOVA

df

SS

MS

F

Significance F

Regression

3

25.2647

8.421566

27.86341

8.65122E-07

Residual

17

5.138159

0.302245

Total

20

30.40286

Coefficients

Standard Error

t Stat

P-value

Intercept

5.359938521

4.559404882

1.175579

0.255965

Length (inches)

0.018520385

0.016658021

1.1118

0.281701

Braking (ft from 60 mph)

-0.02522475

0.031380555

-0.80383

0.43259

Engine Displacement (liters)

0.910291795

0.244316648

3.725869

0.001681

Using minitab we get following output:

Regression Analysis: GHG versus Length (inches), Braking (ft from, Engine Displacem

Analysis of Variance

Source                          DF   Adj SS Adj MS F-Value P-Value

Regression                       3 25.2647 8.4216    27.86    0.000

Length (inches)                1   0.3736 0.3736     1.24    0.282

Braking (ft from 60 mph)       1   0.1953 0.1953     0.65    0.433

Engine Displacement (liters)   1   4.1958 4.1958    13.88    0.002

Error                             17   5.1382 0.3022

Total                            20 30.4029

Model Summary

       S        R-sq       R-sq(adj) R-sq(pred)

0.549768 83.10%     80.12%      74.04%

Coefficients

Term                               Coef SE Coef T-Value P-Value   VIF

Constant                         5.36      4.56       1.18   0.256

Length (inches)                0.0185   0.0167     1.11    0.282 4.04

Braking (ft from 60 mph)      -0.0252   0.0314    -0.80    0.433 1.50

Engine Displacement (liters)    0.910    0.244     3.73    0.002 4.24

Regression Equation

GHG = 5.36 + 0.0185 Length (inches) - 0.0252 Braking (ft from 60 mph)

      + 0.910 Engine Displacement (liters)

Using above result from minitab and excel we get

Multiple regression model is given by,

GHG = 5.36 + 0.0185 Length (inches) - 0.0252 Braking (ft from 60 mph)

      + 0.910 Engine Displacement (liters) (Rounded value)

OR

GHG = 5.35994 + 0.018520385 Length (inches)-0.02522475  Braking (ft from 60 mph)

      + 0.910291795 Engine Displacement (liters)  

Adujested R_Sq is

R-sq(adj)= 80.12%

P value is given by

P-value

Rounded P-value

Intercept

0.255965414

0.256

Length (inches)

0.281700818

0.282

Braking (ft from 60 mph)

0.432590092

0.433

Engine Displacement (liters)

0.001680723

0.002

Steps involve in minitab

Copy data > Stat >Regression > Regression > Fit Regression model > Select Response variable (GHG), Select predictor variable one by one (Length,Braking,Engine Displacement)>ok.

IN Excel

Copy data > Data> Data Analysis > Regression > select Response Range (GHG), select all predictor (Length,Braking,Engine Displacement) >ok


Related Solutions

Which is more appropriate in evaluating a model? R-squared = 51.17 % R-squared (adjusted for d.f.)...
Which is more appropriate in evaluating a model? R-squared = 51.17 % R-squared (adjusted for d.f.) = 50.09 %
What can we expect to happen to R-squared and adjusted R-squared after including an additional explanatory variable to a regression?
What can we expect to happen to R-squared and adjusted R-squared after including an additional explanatory variable to a regression?O Both R-squared and adjusted R-squared will increase.O Both R-squared and adjusted R-squared will decrease.O R-squared will decrease but adjusted R-squared will increase.O R-squared will increase but adjusted R-squared will decrease.O More information is needed to answer.
4) A high r squared or adjusted r squared does not mean a. The included variables...
4) A high r squared or adjusted r squared does not mean a. The included variables are statistically significant. b. That you have an unbiased estimator. c. That you have an appropriate set of regressors. d. all of the above. 5) The adjusted r squared is different from the standard r squared in that it a. is always higher b. accounts for correlation between the error term, and the regressors c. corrects for degrees of freedom (number of regressors included...
Regression equation for Case 3.0: SUMMARY OUTPUT Regression Statistics Multiple R 0.957 R Square 0.915 Adjusted...
Regression equation for Case 3.0: SUMMARY OUTPUT Regression Statistics Multiple R 0.957 R Square 0.915 Adjusted R Square 0.908 Standard Error 5.779 Observations 52 ANOVA df SS MS F Significance F Regression 4 16947.86487 4236.9662 126.8841 1.45976E-24 Residual 47 1569.442824 33.392401 Total 51 18517.30769 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 39.08190 15.31261 2.55227 0.014012 8.27693 69.88687 X-Price -7.37039 0.98942 -7.44921 1.71E-09 -9.36084 -5.37994 Y-Price -5.42813 0.33793 -16.06289 1.03E-20 -6.10796 -4.74831 Z-Price 4.05067 0.33949 11.93173 7.95E-16...
Summarize the statistical concepts of predicted value and R-squared for a linear regression model, including the...
Summarize the statistical concepts of predicted value and R-squared for a linear regression model, including the meaning and interpretation. Give two examples of these concepts applied to a health care decision in a professional setting, and discuss practical, administration-related implications.
29. In multiple regression, the adjusted R-square can be interpreted as a. the percentage of variance...
29. In multiple regression, the adjusted R-square can be interpreted as a. the percentage of variance accounted for in the dependent variable by the set of independent variables b. the percentage of variance accounted for in the dependent variable by a single independent variable c. the strength of the relationship between the dependent variable and the set of independent variables d. the percentage of variance accounted for in the dependent variable by the set of independent variables minus an estimate...
Q2). Distinguish between the following: a) Unbiasedness and Consistency b) R-squared and Adjusted R-squared c) The...
Q2). Distinguish between the following: a) Unbiasedness and Consistency b) R-squared and Adjusted R-squared c) The error term and residuals d) Type I and Type II errors Q3). Explain the term BLUE in ordinary least square (OLS) analysis.
Using Excel: Regression Statistics Multiple R 0.9021 R- Square 0.8138 Adjusted R Square 0.7828 Standard Error...
Using Excel: Regression Statistics Multiple R 0.9021 R- Square 0.8138 Adjusted R Square 0.7828 Standard Error 9.4006 ANOVA df SS MS F Regression 1 2317.6 2317.6 26.226 Residual 6 530.23 88.372 Total 7 2847.9 Coefficients Standard Error t Stat P-value Intercept 45.897 5.5447 8.2776 0.0002 Number of Surgeries (x) 5.1951 1.0144 5.1211 0.0022 1. r = 0.90 strong positive correlation 2. y = 5.195 x + 45.897 , 3. r2 = 0.8138 , and 4. Se =  9.4006 5. Results of...
Dep.= Mileage Indep.= Octane SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard...
Dep.= Mileage Indep.= Octane SUMMARY OUTPUT Regression Statistics Multiple R R Square Adjusted R Square Standard Error Observations 7.0000 ANOVA Significance df SS MS F F Regression 9.1970 Residual Total 169.4286 Standard Coefficients Error t Stat P-value Lower 95% Upper 95% Intercept -115.6768 Octane 1.5305 SE CI CI PI PI Predicted Predicted Lower Upper Lower Upper x0 Value Value 95% 95% 95% 95% 89.0000 1.4274 87.0000 2.0544 Is there a relationship between a car's gas MILEAGE (in miles/gallon) and the...
SUMMARY OUTPUT Regression Statistics Multiple R 0.727076179 R Square 0.528639771 Adjusted R Square 0.525504337 Standard Error...
SUMMARY OUTPUT Regression Statistics Multiple R 0.727076179 R Square 0.528639771 Adjusted R Square 0.525504337 Standard Error 3.573206748 Observations 455 ANOVA df SS MS F Significance F Regression 3 6458.025113 2152.67504 168.601791 2.7119E-73 Residual 451 5758.280717 12.7678065 Total 454 12216.30583 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept -0.250148858 0.359211364 -0.6963835 0.48654745 -0.9560846 0.45578693 -1.1793476 0.67904987 RBUK 0.025079378 0.023812698 1.05319345 0.29281626 -0.0217182 0.07187699 -0.0365187 0.08667745 RSUS 0.713727515 0.042328316 16.8617037 8.0578E-50 0.6305423 0.79691273 0.60423372 0.82322131...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT