In: Statistics and Probability
Determine the regression equatoin for this multiple regression model. Also calculate the adjusted R squared and P value.
| Pedictor Variables/Data | ||||
| Length (inches) | Braking (ft from 60 mph) | Engine Displacement (liters) | GHG | |
| 154 | 133 | 1.6 | 6.6 | |
| 167 | 132 | 1.6 | 6.1 | |
| 177 | 136 | 1.8 | 6.3 | |
| 177 | 138 | 2 | 6.6 | |
| 179 | 137 | 2 | 6.4 | |
| 188 | 135 | 2 | 8.0 | |
| 177 | 126 | 2 | 7.7 | |
| 191 | 136 | 2.3 | 8.0 | |
| 194 | 140 | 2.4 | 7.7 | |
| 189 | 137 | 2.4 | 7.3 | |
| 180 | 135 | 2.5 | 8.3 | |
| 190 | 136 | 2.5 | 7.1 | |
| 180 | 140 | 2.5 | 8.0 | |
| 200 | 131 | 2.7 | 8.7 | |
| 193 | 134 | 3.3 | 8.7 | |
| 191 | 128 | 3.5 | 8.3 | |
| 197 | 139 | 3.5 | 8.0 | |
| 208 | 145 | 4.6 | 10.2 | |
| 203 | 143 | 4.6 | 10.2 | |
| 212 | 140 | 4.6 | 9.6 | |
| 215 | 143 | 4.6 | 9.6 | |
Using Excel we get following output
| 
 SUMMARY OUTPUT  | 
||||||||||
| 
 Regression Statistics  | 
||||||||||
| 
 Multiple R  | 
 0.911590634  | 
|||||||||
| 
 R Square  | 
 0.830997484  | 
|||||||||
| 
 Adjusted R Square  | 
 0.801173511  | 
|||||||||
| 
 Standard Error  | 
 0.54976783  | 
|||||||||
| 
 Observations  | 
 21  | 
|||||||||
| 
 ANOVA  | 
||||||||||
| 
 df  | 
 SS  | 
 MS  | 
 F  | 
 Significance F  | 
||||||
| 
 Regression  | 
 3  | 
 25.2647  | 
 8.421566  | 
 27.86341  | 
 8.65122E-07  | 
|||||
| 
 Residual  | 
 17  | 
 5.138159  | 
 0.302245  | 
|||||||
| 
 Total  | 
 20  | 
 30.40286  | 
||||||||
| 
 Coefficients  | 
 Standard Error  | 
 t Stat  | 
 P-value  | 
|||||||
| 
 Intercept  | 
 5.359938521  | 
 4.559404882  | 
 1.175579  | 
 0.255965  | 
||||||
| 
 Length (inches)  | 
 0.018520385  | 
 0.016658021  | 
 1.1118  | 
 0.281701  | 
||||||
| 
 Braking (ft from 60 mph)  | 
 -0.02522475  | 
 0.031380555  | 
 -0.80383  | 
 0.43259  | 
||||||
| 
 Engine Displacement (liters)  | 
 0.910291795  | 
 0.244316648  | 
 3.725869  | 
 0.001681  | 
||||||
Using minitab we get following output:
Regression Analysis: GHG versus Length (inches), Braking (ft from, Engine Displacem
Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Regression 3 25.2647 8.4216 27.86 0.000
Length (inches) 1 0.3736 0.3736 1.24 0.282
Braking (ft from 60 mph) 1 0.1953 0.1953 0.65 0.433
Engine Displacement (liters) 1 4.1958 4.1958 13.88 0.002
Error 17 5.1382 0.3022
Total 20 30.4029
Model Summary
S R-sq R-sq(adj) R-sq(pred)
0.549768 83.10% 80.12% 74.04%
Coefficients
Term Coef SE Coef T-Value P-Value VIF
Constant 5.36 4.56 1.18 0.256
Length (inches) 0.0185 0.0167 1.11 0.282 4.04
Braking (ft from 60 mph) -0.0252 0.0314 -0.80 0.433 1.50
Engine Displacement (liters) 0.910 0.244 3.73 0.002 4.24
Regression Equation
GHG = 5.36 + 0.0185 Length (inches) - 0.0252 Braking (ft from 60 mph)
+ 0.910 Engine Displacement (liters)
Using above result from minitab and excel we get
Multiple regression model is given by,
GHG = 5.36 + 0.0185 Length (inches) - 0.0252 Braking (ft from 60 mph)
+ 0.910 Engine Displacement (liters) (Rounded value)
OR
GHG = 5.35994 + 0.018520385 Length (inches)-0.02522475 Braking (ft from 60 mph)
+ 0.910291795 Engine Displacement (liters)
Adujested R_Sq is
R-sq(adj)= 80.12%
P value is given by
| 
 P-value  | 
 Rounded P-value  | 
|
| 
 Intercept  | 
 0.255965414  | 
 0.256  | 
| 
 Length (inches)  | 
 0.281700818  | 
 0.282  | 
| 
 Braking (ft from 60 mph)  | 
 0.432590092  | 
 0.433  | 
| 
 Engine Displacement (liters)  | 
 0.001680723  | 
 0.002  | 
Steps involve in minitab
Copy data > Stat >Regression > Regression > Fit Regression model > Select Response variable (GHG), Select predictor variable one by one (Length,Braking,Engine Displacement)>ok.
IN Excel
Copy data > Data> Data Analysis > Regression > select Response Range (GHG), select all predictor (Length,Braking,Engine Displacement) >ok