In: Operations Management
Order Size |
Delivery Fee |
0≤Q≤700 |
$15 |
701≤Q≤1,500 |
$25 |
1,501≤Q |
$30 |
Assume that the cost of order processing is $150. What is the optimal order quantity and the corresponding annual total cost?
Answer: 700, $938.40
Annual Demand D = Monthly Demand *12 = 12*40 = 480 pounds
Total Cost per Order (S) = Cost per order + Delivery Fee
Holding Cost per unit(G) = Unit Cost * Annual Holding Cost %
If EOQ > higher limit of the range
Feasible EOQ = Higher limit of the range
If EOQ < lower limit of the range
Feasible EOQ = lower limit of the range
Ordering Cost = (Annual Demand/Feasible EOQ)*Total cost per order (S)
Holding Cost = (Feasible EOQ/2)*Holding Cost per unit
Purchasing Cost = Annual Demand (D) *Unit Cost
Total Cost = Ordering Cost + Holding Cost + Purchasing Cost
Total Cost for Q = 700 is the least among all three scenario. Optimal Order Qty is 700 and total cost for the same is $938.14