In: Finance
Ecoosa Organic Mattresses Manufacturers Limited (EOMML) is
planning to purchase a new
material handling machine for its manufacturing unit. The company
is considering the
following four mutually exclusive investments. The required payback
period is five and a half
years. The financial data regarding the four machines is given
below (ignore taxes).
|
The manufacturing department has requested the chief financial
offer (CFO) to evaluate the
above investment opportunities using both payback period and
internal rate of return methods.
The CFO is seeking your help to calculate each machine's payback
period, internal rate of
return and determine appropriate hurdle rates.
Required:
(a) Calculate each machine’s payback period and state which
alternative should be accepted
based on this criterion.
(b) Calculate each machine's internal rate of return (IRR), and
using a hurdle rate of 25% state
which of the alternatives is acceptable by this criteria.
(c) Explain two probable circumstances in which EOMML is choosing
ONE machine from
among the four mutually exclusive investments.
Machine/asset | Machine A | Machine B | Machine C | Machine D | |
Revenue | 66,000 | 62,500 | 58,500 | 47,000 | |
Operational costs | 31,000 | 29,000 | 26,610 | 22,100 | |
Depreciation | 8,750 | 10,250 | 11,600 | 12,000 | |
Interest | 12,600 | 11,250 | 10,440 | 8,850 | |
Cost of the machine | 1,40,000 | 1,20,000 | 1,16,000 | 98,000 | |
Machine life (years) | 16 | 12 | 10 | 8 | |
Annual operational cash inflow from the machine (Revenue-Operational costs. Interest need not be deducted and tax shield on depreciation ignored as directed) | 35,000 | 33,500 | 31,890 | 24,900 | |
a) | Payback period in years = Cost of the machine/Annual operational cash flow = | 4.00 | 3.58 | 3.64 | 3.94 |
Using the payback method, projects having payback period less than the maximum payback period prescribed by the mangement can be accepted. Here, the maximum payback period prescribed by the management is 5.5 years. As such all the four projects are acceptable for their payback period is less than 5.5 years. | |||||
b) | IRR: | ||||
IRR is that discount rate for which the NPV = 0. This means that the PV of the cash inflows, when discounted with the IRR of the project, should be equal to the initial investment. Putting in the form of an equation, we have Initial investment = Annual cash inflow*PVIFA(IRR,n). This means that Initial investment/Annual cash inflow = PVIFA(IRR,n). The value of IRR can be interpolated from the Interest factor tables. | |||||
Interest fator for IRR = Initial investment/Annual cash inflow | 4.0000 | 3.5821 | 3.6375 | 3.9357 | |
Interest rates within which the factors lie: | |||||
Lower bound % | 24 | 26 | 24 | 19 | |
Upper bound % | 25 | 27 | 25 | 20 | |
Lower bound interest annuity factor | 4.0333 | 3.6059 | 3.6059 | 3.9544 | |
Upper bound interest annuity factor | 3.8874 | 3.4933 | 3.4933 | 3.8372 | |
IRR = Lower bound interst rate+(Lower bound interest factor-Interest factor for IRR)/(Higher bound interst factor-Lower bound interest factor). | |||||
IRR (%) | 24.23 | 26.21 | 23.72 | 19.16 | |
All projects with IRR>Hurdle rate (of 25%) are acceptable. Hence, only Machine B is acceptable. | |||||
c) | The probable circumstances for choosing one machine from the four alternatives are: | ||||
i) The firm technically needs only one of the machines, making the alternatives 'mutually' exclusive. | |||||
ii) The firm has funds to buy only one of the machines. |