In: Computer Science
Java
. Implement a method that meets the following requirements: (a) Calls mergesort to sort an array/list of at least 5 integers (b) Prints the list before and after sorting.
Answer:
public class MergeSort {
public static void main(String args[]) {
mergeSort();
}
static void mergeSort() {
int arr[]= {21, 11, 1, 45, 3, 7, 6};
System.out.println("\nArray before merge sort: ");
for ( int i=0;i<arr.length;i++)
{
System.out.print(arr[i]+" ");
}
sort(arr,0,arr.length-1);
System.out.println("\nArray after merge sort: ");
for ( int i=0;i<arr.length;i++)
{
System.out.print(arr[i]+" ");
}
}
static void sort(int arr[],int l,int r)
{
if (l < r)
{
// Find the middle point
int m = (l+r)/2;
// Sort first and second halves
sort(arr, l, m);
sort(arr , m+1, r);
// Merge the sorted halves
merge(arr, l, m, r);
}
}
// Merges two subarrays of arr[].
static void merge(int arr[],int l,int m,int r)
{
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;
/* Create temp arrays */
int L[] = new int [n1];
int R[] = new int [n2];
/*Copy data to temp arrays*/
for (int i=0; i<n1; ++i)
L[i] = arr[l + i];
for (int j=0; j<n2; ++j)
R[j] = arr[m + 1+ j];
/* Merge the temp arrays */
// Initial indexes of first and second subarrays
int i = 0, j = 0;
// Initial index of merged subarry array
int k = l;
while (i < n1 && j < n2)
{
if (L[i] <= R[j])
{
arr[k] = L[i];
i++;
}
else
{
arr[k] = R[j];
j++;
}
k++;
}
/* Copy remaining elements of L[] if any */
while (i < n1)
{
arr[k] = L[i];
i++;
k++;
}
/* Copy remaining elements of R[] if any */
while (j < n2)
{
arr[k] = R[j];
j++;
k++;
}
}
}
Output:
