In: Computer Science
Java
. Implement a method that meets the following requirements: (a) Calls mergesort to sort an array/list of at least 5 integers (b) Prints the list before and after sorting.
Answer:
public class MergeSort { public static void main(String args[]) { mergeSort(); } static void mergeSort() { int arr[]= {21, 11, 1, 45, 3, 7, 6}; System.out.println("\nArray before merge sort: "); for ( int i=0;i<arr.length;i++) { System.out.print(arr[i]+" "); } sort(arr,0,arr.length-1); System.out.println("\nArray after merge sort: "); for ( int i=0;i<arr.length;i++) { System.out.print(arr[i]+" "); } } static void sort(int arr[],int l,int r) { if (l < r) { // Find the middle point int m = (l+r)/2; // Sort first and second halves sort(arr, l, m); sort(arr , m+1, r); // Merge the sorted halves merge(arr, l, m, r); } } // Merges two subarrays of arr[]. static void merge(int arr[],int l,int m,int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ int L[] = new int [n1]; int R[] = new int [n2]; /*Copy data to temp arrays*/ for (int i=0; i<n1; ++i) L[i] = arr[l + i]; for (int j=0; j<n2; ++j) R[j] = arr[m + 1+ j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } }
Output: