Question

In: Math

The file SAT Excel data lists the average high school student scores on the SAT exam...

The file SAT Excel data lists the average high school student scores on the SAT exam by state. There are three components of the SAT: Critical reading, math and writing. These components are listed in Excel. Also, the sum of all 3 components (The Combined column) is listed. The percentage of all potential students who took the SAT is listed by state. Use Excel to help you answer the following questions. Find the mean, median, and mode for each of the numerical variables. For each of the numerical variables, which is the most appropriate measure of central tendency and explain why.

Solutions

Expert Solution

As the data is not given, I have taken at random 20 students and generated random numbers for their marks.

Hence it is evident that as the data in writing is highly dispersed, median is the best measure here to avoid the effect of the outliers. Elsewhere mean is the best measure to determine the central tendency of the variables.

To have the best answers, you must submit the data file along with the question.


Related Solutions

An investigator collected data on midterm exam scores and final exam scores of elementary school students;...
An investigator collected data on midterm exam scores and final exam scores of elementary school students; results can summarized as follows. Average SD -------------------------------------------------- Boys' midterm score 70 20 Boys' final score 65 23 girls' midterm score 75 20 girls' final score 80 23 The correlation coefficient between midterm score and final score for the boys was about 0.70; for the girls, it was about the same. If you take the boys and the girls together, the correlation between midterm...
Problem 1 The following table lists data on the participation scores and midterm exam scores for...
Problem 1 The following table lists data on the participation scores and midterm exam scores for 23 students who took the Accounting Theory class in Spring 2019. Student Number Participation Score Midterm Score 1 5 75 2 6.5 84 3 6.5 73 4 7 96 5 7.5 83 6 7.5 88 7 7.5 75 8 8 75 9 8.5 82.5 10 8.5 89 11 8.5 90 12 8.5 91 13 9 92 14 9 81.5 15 9 95 16 9...
The combined SAT scores for the students at a local high school are normally distributed with...
The combined SAT scores for the students at a local high school are normally distributed with a mean of 1521 and a standard deviation of 298. The local college includes a minimum score of 1044 in its admission requirements. What percentage of students from this school earn scores that fail to satisfy the admission requirement?
The combined SAT scores for the students at a local high school are normally distributed with...
The combined SAT scores for the students at a local high school are normally distributed with a mean of 1488 and a standard deviation of 292. The local college includes a minimum score of 2014 in its admission requirements. What percentage of students from this school earn scores that fail to satisfy the admission requirement? P(X < 2014) =________ % Enter your answer as a percent accurate to 1 decimal place (do not enter the "%" sign). Answers obtained using...
A high school believes that their seniors have gotten exceptionally high SAT scores this year, and...
A high school believes that their seniors have gotten exceptionally high SAT scores this year, and they want to compare the SAT scores of their 400 seniors to the SAT scores of all the high school seniors in the country.   What is the best statistical test to use to analyze the hypothesis in scenario 1? Group of answer choices One-way ANOVA Two Sample Z-Test Factor Analysis Correlation Coefficient Independent sample t-Test Dependent sample t-Test Z-Score Structural Equation Model One Sample...
Suppose that the population of the scores of all high school seniors that took the SAT-M...
Suppose that the population of the scores of all high school seniors that took the SAT-M (SAT Math) test this year follows a Normal Distribution with mean µ and standard deviation σ = 100. You read a report that says, “On the basis of a simple random sample of 100 high school seniors that took the SAT-M test this year, a confidence interval for µ is 512.00 ± 19.6.” If this is true, then the confidence level for this interval...
The scores of students on the SAT college entrance examinations at a certain high school had...
The scores of students on the SAT college entrance examinations at a certain high school had a normal distribution with mean μ=544 and standard deviation σ=29.1. (a) What is the probability that a single student randomly chosen from all those taking the test scores 548 or higher? For parts (b) through (d), consider a simple random sample (SRS) of 35 students who took the test. (b) What are the mean and standard deviation of the sample mean score x¯, of...
The SAT scores for US high school students are normally distributed with a mean of 1500...
The SAT scores for US high school students are normally distributed with a mean of 1500 and a standard deviation of 100. 1. Calculate the probability that a randomly selected student has a SAT score greater than 1650. 2. Calculate the probability that a randomly selected student has a SAT score between 1400 and 1650, inclusive. 3. If we have random sample of 100 students, find the probability that the mean scores between 1485 and 1510, inclusive.
The scores of students on the SAT college entrance examinations at a certain high school had...
The scores of students on the SAT college entrance examinations at a certain high school had a normal distribution with mean ?=545.8μ=545.8 and standard deviation ?=28.4σ=28.4. (a) What is the probability that a single student, randomly chosen from all those taking the test, would score 552 or higher? For parts (b) through (d), consider a simple random sample (SRS) of 35 students who took the test. (b) What are the mean and standard deviation of the sample mean score ?¯x¯,...
The scores of students on the SAT college entrance examinations at a certain high school had...
The scores of students on the SAT college entrance examinations at a certain high school had a normal distribution with mean  and standard deviation . (a) What is the probability that a single student randomly chosen from all those taking the test scores 545 or higher? ANSWER:   For parts (b) through (d), consider a simple random sample (SRS) of 30 students who took the test. (b) What are the mean and standard deviation of the sample mean score , of 30...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT