Question

In: Physics

Part One: A simple pendulum of length l =0.800 has a mass =0.250kg. What is the...

Part One: A simple pendulum of length l =0.800 has a mass =0.250kg. What is the tension in the string when it is at angle theta =12.5°? Show your force diagram and work to support your answer.

Part Two: What is the period T of the motion of the pendulum in Part One? Assume the period is independent of angle theta.

Solutions

Expert Solution

                                                                                                                                                      

(ANS) : Part-1 : Given : l = 0.800 m , m = 0.250 kg . = 12.5 o, g = 9.8 m/ sec2 .Find tension in the string T = ?

                                    Since , T = mg cos (

                                               T = 0.250 x 9.8 x COS(12.50)

                                               T = 2.45 x 0.9762

                                               T = 2.3919 N .

Therefore , the tension in the string is T = 2.3919 N

PART - 2 : From

                               T =   2x 3.14

                               T = 6.28 x

                               T = 6.28 x 0.2856

                               T = 1.7939 Sec

Therefore , the time period of the motion of pendulam is T = 1.7939 Sec


Related Solutions

Q1: Consider the simple pendulum system, the length of the pendulum is ‘l’ and mass ‘m’...
Q1: Consider the simple pendulum system, the length of the pendulum is ‘l’ and mass ‘m’ has simple harmonic motion. Find the equation of motion using 2 approaches: Newtonian and Lagrangian. What do you conclude?
Consider a simple plane pendulum of mass m and length l (the mass swings in a...
Consider a simple plane pendulum of mass m and length l (the mass swings in a vertical plane). After the pendulum is set into motion, the length of the string is decreased at a constant rate, ??/?? = −? = ?????. The suspension point remains fixed. (a) Compute the Lagrangian and Hamiltonian for the system. [4] (b) Compare the Hamiltonian and the total energy- is the energy conserved? Why/Why not? [2]
A simple pendulum with mass m = 1.6 kg and length L = 2.79 m hangs...
A simple pendulum with mass m = 1.6 kg and length L = 2.79 m hangs from the ceiling. It is pulled back to an small angle of θ = 10.7° from the vertical and released at t = 0. A)What is the period of oscillation? B)What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? C)What is the maximum speed of the pendulum? D)What is the angular displacement at t = 3.62...
A simple pendulum with mass m = 2.3 kg and length L = 2.67 m hangs...
A simple pendulum with mass m = 2.3 kg and length L = 2.67 m hangs from the ceiling. It is pulled back to an small angle of θ = 9.4° from the vertical and released at t = 0. What is the maximum speed of the pendulum? 4) What is the angular displacement at t = 3.57 s? (give the answer as a negative angle if the angle is to the left of the vertical) 5) What is the...
A simple pendulum with mass m = 1.3 kg and length L = 2.62 m hangs...
A simple pendulum with mass m = 1.3 kg and length L = 2.62 m hangs from the ceiling. It is pulled back to an small angle of ? = 11.6° from the vertical and released at t = 0. What is the period of oscillation? What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? What is the maximum speed of the pendulum? What is the angular displacement at t = 3.67...
A simple pendulum with mass m = 1.5 kg and length L = 2.49 m hangs...
A simple pendulum with mass m = 1.5 kg and length L = 2.49 m hangs from the ceiling. It is pulled back to an small angle of θ = 9.5° from the vertical and released at t = 0. What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? What is the maximum speed of the pendulum? What is the angular displacement at t = 3.67 s? (give the answer as a...
A simple pendulum with mass m = 1.8 kg and length L = 2.69 m hangs...
A simple pendulum with mass m = 1.8 kg and length L = 2.69 m hangs from the ceiling. It is pulled back to an small angle of θ = 8.7° from the vertical and released at t = 0. 1) What is the period of oscillation? 2) What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? 3) What is the maximum speed of the pendulum? 4) What is the angular displacement...
A simple pendulum has a mass of 0.550 kg and a length of 2.00 m. It...
A simple pendulum has a mass of 0.550 kg and a length of 2.00 m. It is displaced through an angle of 11.0
A simple pendulum has a mass of 0.650 kg and a length of 7.00 m. It...
A simple pendulum has a mass of 0.650 kg and a length of 7.00 m. It is displaced through an angle of 14.0° and then released. Using the analysis model of a particle in simple harmonic motion, calculate the following. (Give your answer to the thousandths place.) (a) What is the maximum speed of the bob? (b) What is the maximum angular acceleration of the bob? (rad/s2) (c) What is the maximum restoring force of the bob? (d) Solve parts...
The length of a simple pendulum is 0.75 m and the mass of the particle (the...
The length of a simple pendulum is 0.75 m and the mass of the particle (the “bob”) at the end of the cable is 0.26 kg. The pendulum is pulled away from its equilibrium position by an angle of 9.2° and released from rest. Assume that friction can be neglected and that the resulting oscillatory motion is simple harmonic motion. (a) What is the angular frequency of the motion? (b) Using the position of the bob at its lowest point...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT