Question

In: Statistics and Probability

A random sample of 28 fields of spring wheat has a mean yield of 44.7 bushels...

A random sample of 28 fields of spring wheat has a mean yield of 44.7 bushels per acre and standard deviation of 6.96 bushels per acre. Determine the 95% confidence interval for the true mean yield. Assume the population is approximately normal.

Step 1 of 2:

Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places.

Step 2 of 2:

Construct the 95%95% confidence interval. Round your answer to one decimal place.

LOWER END POINT: ___________ UPPER END POINT:_______________

Solutions

Expert Solution

Solution :

Given that,

= 44.7

s = 6.96

n = 28

Degrees of freedom = df = n - 1 = 28 - 1 = 27

At 95% confidence level the t is ,

= 1 - 95% = 1 - 0.95 = 0.05

/ 2 = 0.05 / 2 = 0.025

t /2,df = t0.025,27 = 2.052

Margin of error = E = t/2,df * (s /n)

= 2.052 * (6.96 / 28)

= 2.7

The 95% confidence interval estimate of the population mean is,

- E < < + E

44.7 - 2.7 < < 44.7 + 2.7

42.0 < < 47.4

Lower end point = 42.0

Upper end point = 47.4


Related Solutions

A random sample of 13 fields of durum wheat has a mean yield of 28.3 bushels...
A random sample of 13 fields of durum wheat has a mean yield of 28.3 bushels per acre and standard deviation of 4.28 bushels per acre. Determine the 98% confidence interval for the true mean yield. Assume the population is approximately normal. Identify the parameter we are estimating using words or the proper statistical symbol. (1 point) Check the conditions that would allow us to construct and interpret this CI. (1 point) Interpret the CI in the context of the...
A random sample of 13 fields of durum wheat has a mean yield of 28.3 bushels...
A random sample of 13 fields of durum wheat has a mean yield of 28.3 bushels per acre and standard deviation of 4.28 bushels per acre. Determine the 98% confidence interval for the true mean yield. Assume the population is approximately normal.
A random sample of 11 fields of corn has a mean yield of 48.9 bushels per...
A random sample of 11 fields of corn has a mean yield of 48.9 bushels per acre and standard deviation of 4.23 bushels per acre. Determine the 95% confidence interval for the true mean yield. Assume the population is approximately normal. Step 1 of 2: Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places. Step 2 of 2: Construct the 95% confidence interval. Round your answer to one decimal...
A random sample of 7 fields of corn has a mean yield of 31.0 bushels per...
A random sample of 7 fields of corn has a mean yield of 31.0 bushels per acre and standard deviation of 7.05 bushels per acre. Determine the 90% confidence interval for the true mean yield. Assume the population is approximately normal. Step 1 of 2 : Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places.
A random sample of 10 fields of corn has a mean yield of 37.1 bushels per...
A random sample of 10 fields of corn has a mean yield of 37.1 bushels per acre and standard deviation of 5.91 bushels per acre. Determine the 98% confidence interval for the true mean yield. Assume the population is approximately normal. Step 2 of 2: Construct the 98% confidence interval. Round your answer to one decimal place.
A random sample of 9 fields of rye has a mean yield of 35.9 bushels per...
A random sample of 9 fields of rye has a mean yield of 35.9 bushels per acre and standard deviation of 2.47 bushels per acre. Determine the 90%confidence interval for the true mean yield. Assume the population is approximately normal. Step 1 of 2: Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places. Construct the 90% confidence interval. Round your answer to one decimal place.
A random sample of 5 fields of rye has a mean yield of 21.3 bushels per...
A random sample of 5 fields of rye has a mean yield of 21.3 bushels per acre and standard deviation of 2.53 bushels per acre. Determine the 99% confidence interval for the true mean yield. Assume the population is approximately normal. Step 1 of 2 : Find the critical value that should be used in constructing the confidence interval. Round your answer to three decimal places.
1. A simple random sample of 25 items resulted in a sample mean of 28 and...
1. A simple random sample of 25 items resulted in a sample mean of 28 and a standard deviation of 7.5. Construct a 95% confidence interval for the population mean. Select one: A. 24.904 to 31.096 B. 25.905 to 32.096 C. 26.324 to 29.432 D. None of the above answers is correct 2. A simple random sample of 25 items resulted in a sample mean of 28 and a standard deviation of 7.5. Construct a 99% confidence interval for the...
An agribusiness performed a regression of wheat yield (bushels per acre) using observations on 22 test...
An agribusiness performed a regression of wheat yield (bushels per acre) using observations on 22 test plots with four predictors (rainfall, fertilizer, soil acidity, hours of sun). The standard error was 1.18 bushels. (a) Find the approximate width of a 95% prediction interval for wheat yield. (Round your answer to 2 decimal places.)   yˆiyi   ±     (b) Find the approximate width using the quick rule. (Round your answer to 2 decimal places.)   yˆiyi ±    (c) The quick rule gives a similar...
A local agriculture producer had a wheat yield last year of 72 bushels per acre. The...
A local agriculture producer had a wheat yield last year of 72 bushels per acre. The producer had an unusually productive year. The normal wheat yield on this particular farm is 38 bushels per acre with a variance (σ2) of 16 bushels per acre. What is the probability that the wheat yield this year will be within one standard deviation (±) of the mean? Hint: think Empirical Rule.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT