In: Finance
answer them in typed please.
1. The (annual) expected return and standard deviation of returns for 2 assets are as follows: Asset A Asset B E[r] 10% 20% SD[r] 30% 50% The correlation between the returns is 0.15. a. Calculate the expected returns and standard deviations of the following portfolios: (i) 80% in A, 20% in B (ii) 50% in A, 50% in B (iii) 20% in A, 80% in B
b. Find the weights for a portfolio with an expected return of 25%? What is the standard deviation of this portfolio?
ANSWER
a. part
(i) Weight(A) = 0.80 , Weight(B) = 0.20
ER(portfolio) = { ER(A) * Weight(A) } + { ER(B) * Weight(B) }
= { 10 * 0.80 } + { 20 * 0.20 }
= 12 %
SD(portfolio) = { SD(A)2 * W(A)2 + SD(B)2 * W(B)2 + 2*SD(A) * SD(B) * W(A) * W(B) * CORR }1/2
= { 900*0.64 + 2500*0.04 + 2*30*50*0.8*0.2*0.15}1/2
= {748}1/2
= 27.35 %
(ii) Weight(A) = 0.50 , Weight(B) = 0.50
ER(portfolio) = { ER(A) * Weight(A) } + { ER(B) * Weight(B) }
= { 10 * 0.50 } + { 20 * 0.50 }
= 15 %
SD(portfolio) = { SD(A)2 * W(A)2 + SD(B)2 * W(B)2 + 2*SD(A) * SD(B) * W(A) * W(B) * CORR }1/2
= { 900*0.25 + 2500*0.25 + 2*30*50*0.5*0.5*0.15}1/2
= {917.5}1/2
= 30.29 %
(iii) Weight(A) = 0.20 , Weight(B) = 0.80
ER(portfolio) = { ER(A) * Weight(A) } + { ER(B) * Weight(B) }
= { 10 * 0.20 } + { 20 * 0.80 }
= 18 %
SD(portfolio) = { SD(A)2 * W(A)2 + SD(B)2 * W(B)2 + 2*SD(A) * SD(B) * W(A) * W(B) * CORR }1/2
= { 900*0.04 + 2500*0.64 + 2*30*50*0.2*0.8*0.15}1/2
= {1708}1/2
= 41.33 %
b. part
let Weight(A) be x, and Weight(B) be (1-x)
Now we can Solve this by Solving the ER(portfolio) Equation :
ER(portfolio) = { ER(A) * Weight(A) } + { ER(B) * Weight(B) }
25 = {10 * x } + {20 * (1 - x) }
25 = 10x + 20 - 20x
25 - 20 = -10x
x = - 0.5
Weight (A) = - 0.5 {its Negative which means Short Selling of StockA}
Weight (B) = 1 - (-0.5) = 1.5
PROOF
ER (portfolio) = { ER(A) * Weight(A) } + { ER(B) * Weight(B) }
= { 10 * -0.5 } + { 20 * 1.5 }
= { - 5 } + { 30 }
= 25%
HENCE our Weights are Correct
NOW, lets Calculate SD(portfolio)
SD(portfolio) = { SD(A)2 * W(A)2 + SD(B)2 * W(B)2 + 2*SD(A) * SD(B) * W(A) * W(B) * CORR }1/2
= { 900*0.25 + 2500*2.25 + 2*30*50*-0.5*1.5*0.15}1/2
= { 225 + 5625 - 337.5 }1/2
= {5512.5}1/2
= 74.25 %